作为机器学习质量标准的公平性--哲学概念的重构以及在合格租金指数中使用法外特征的影响

Ludwig Bothmann, Kristina Peters
{"title":"作为机器学习质量标准的公平性--哲学概念的重构以及在合格租金指数中使用法外特征的影响","authors":"Ludwig Bothmann,&nbsp;Kristina Peters","doi":"10.1007/s11943-024-00346-0","DOIUrl":null,"url":null,"abstract":"<p>Mit der verstärkten Nutzung von Modellen des Maschinellen Lernens (ML) innerhalb von Systemen der automatisierten Entscheidungsfindung wachsen die Anforderungen an die Qualität von ML-Modellen. Die reine Prognosegüte ist nicht länger das alleinige Qualitätskriterium; insbesondere wird vermehrt gefordert, dass Fairnessaspekte berücksichtigt werden. Dieser Beitrag verfolgt zwei Ziele. Zum einen werden die aktuelle Fairnessdiskussion im Bereich ML (fairML) zusammengefasst und die aktuellsten Entwicklungen, insbesondere in Bezug auf die philosophischen Grundlagen des Fairnessbegriffs innerhalb ML, beschrieben. Zum anderen wird die Frage behandelt, inwiefern sogenannte „außergesetzliche“ Merkmale bei der Erstellung qualifizierter Mietspiegel genutzt werden dürfen. Ein aktueller Vorschlag von Kauermann und Windmann (AStA Wirtschafts- und Sozialstatistisches Archiv, Band 17, 2023) zur Nutzung außergesetzlicher Merkmale in qualifizierten Mietspiegeln beinhaltet eine modellbasierte Imputationsmethode, welche wir den gesetzlichen Anforderungen gegenüberstellen. Schließlich zeigen wir auf, welche Alternativen aus dem Bereich fairML genutzt werden könnten und legen dar, welche unterschiedlichen philosophischen Grundannahmen hinter den verschiedenen Verfahren stehen.</p>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"18 2","pages":"185 - 201"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11943-024-00346-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln\",\"authors\":\"Ludwig Bothmann,&nbsp;Kristina Peters\",\"doi\":\"10.1007/s11943-024-00346-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mit der verstärkten Nutzung von Modellen des Maschinellen Lernens (ML) innerhalb von Systemen der automatisierten Entscheidungsfindung wachsen die Anforderungen an die Qualität von ML-Modellen. Die reine Prognosegüte ist nicht länger das alleinige Qualitätskriterium; insbesondere wird vermehrt gefordert, dass Fairnessaspekte berücksichtigt werden. Dieser Beitrag verfolgt zwei Ziele. Zum einen werden die aktuelle Fairnessdiskussion im Bereich ML (fairML) zusammengefasst und die aktuellsten Entwicklungen, insbesondere in Bezug auf die philosophischen Grundlagen des Fairnessbegriffs innerhalb ML, beschrieben. Zum anderen wird die Frage behandelt, inwiefern sogenannte „außergesetzliche“ Merkmale bei der Erstellung qualifizierter Mietspiegel genutzt werden dürfen. Ein aktueller Vorschlag von Kauermann und Windmann (AStA Wirtschafts- und Sozialstatistisches Archiv, Band 17, 2023) zur Nutzung außergesetzlicher Merkmale in qualifizierten Mietspiegeln beinhaltet eine modellbasierte Imputationsmethode, welche wir den gesetzlichen Anforderungen gegenüberstellen. Schließlich zeigen wir auf, welche Alternativen aus dem Bereich fairML genutzt werden könnten und legen dar, welche unterschiedlichen philosophischen Grundannahmen hinter den verschiedenen Verfahren stehen.</p>\",\"PeriodicalId\":100134,\"journal\":{\"name\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"volume\":\"18 2\",\"pages\":\"185 - 201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11943-024-00346-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11943-024-00346-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-024-00346-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器学习(ML)模型在自动决策系统中的使用越来越多,对 ML 模型质量的要求也越来越高。纯粹的预测质量不再是唯一的质量标准,尤其是对公平性方面的要求越来越高。本文有两个目的。首先,它总结了当前有关 ML(fairML)领域公平性的讨论,并描述了最新发展,特别是有关 ML 中公平性概念的哲学基础。其次,讨论了在编制合格租金指数时可以在多大程度上使用所谓 "法律外 "特征的问题。考尔曼和温德曼(AStA Wirtschafts- und Sozialstatistisches Archiv,第 17 卷,2023 年)目前提出的关于在限定租金指数中使用非法定特征的建议包括一种基于模型的估算方法,我们将其与法定要求进行了比较。最后,我们说明了可以使用公平估算法中的哪些替代方法,并解释了各种方法背后不同的基本哲学假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln

Mit der verstärkten Nutzung von Modellen des Maschinellen Lernens (ML) innerhalb von Systemen der automatisierten Entscheidungsfindung wachsen die Anforderungen an die Qualität von ML-Modellen. Die reine Prognosegüte ist nicht länger das alleinige Qualitätskriterium; insbesondere wird vermehrt gefordert, dass Fairnessaspekte berücksichtigt werden. Dieser Beitrag verfolgt zwei Ziele. Zum einen werden die aktuelle Fairnessdiskussion im Bereich ML (fairML) zusammengefasst und die aktuellsten Entwicklungen, insbesondere in Bezug auf die philosophischen Grundlagen des Fairnessbegriffs innerhalb ML, beschrieben. Zum anderen wird die Frage behandelt, inwiefern sogenannte „außergesetzliche“ Merkmale bei der Erstellung qualifizierter Mietspiegel genutzt werden dürfen. Ein aktueller Vorschlag von Kauermann und Windmann (AStA Wirtschafts- und Sozialstatistisches Archiv, Band 17, 2023) zur Nutzung außergesetzlicher Merkmale in qualifizierten Mietspiegeln beinhaltet eine modellbasierte Imputationsmethode, welche wir den gesetzlichen Anforderungen gegenüberstellen. Schließlich zeigen wir auf, welche Alternativen aus dem Bereich fairML genutzt werden könnten und legen dar, welche unterschiedlichen philosophischen Grundannahmen hinter den verschiedenen Verfahren stehen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vorwort der Herausgeber Connecting algorithmic fairness to quality dimensions in machine learning in official statistics and survey production Automated Bayesian variable selection methods for binary regression models with missing covariate data Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln Interview mit Walter Krämer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1