Bertrand Zing Zing, Lin Marcellin Messi Ambassa, Eugene Ehabe Ejolle, Desire Placide Belibi Belibi, Charles Melea Kede
{"title":"利用稻壳灰优化合成的生物硅石保护储藏的普通豆类和玉米粒","authors":"Bertrand Zing Zing, Lin Marcellin Messi Ambassa, Eugene Ehabe Ejolle, Desire Placide Belibi Belibi, Charles Melea Kede","doi":"10.1155/2024/3741615","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Losses provoked by insect pests on stored cereals and legumes contribute immensely to reduce food security, especially in rural communities in Sub-Saharan Africa. The application of integrated control strategies, involving the use of synthetic pesticides, is often expensive and hazardous to humans and the environment. This study was conducted to optimize the production and use of biosilica from rice husk ashes, for the control of <i>Sitophilus zeamais</i> and <i>Acanthoscelides obtectus</i>, major insect pests of stored maize and common bean grains. The amorphous nature of the derived silica molecules coupled with the silanol and siloxane groups on their surfaces seemed to account for silica’s insecticidal effects on the pests, which were more on <i>A. obtectus</i> on common beans than <i>S. zeamais</i> on maize grains, with full mortalities obtained at doses of about 1.25 g per 50 g bean seeds and about 2.25 g per 50 g maize seeds, within 3 and 12 days, respectively. Similarly, the daily lethal dose (LD<sub>50</sub>) of silica powder required to obtain the mortality of half of the insects was lower on common beans than on maize seeds. The reduced phytotoxic activity of the biosilica on the stored common bean and maize grains indicates therefore that it could make an ecofriendly alternative to conventional protectants for small quantities of stored grains. However, large-scale studies are needed in order to evaluate its potential use in grain storage systems.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3741615","citationCount":"0","resultStr":"{\"title\":\"Protection of Stored Common Bean and Maize Grains Using Optimally Synthesized Biosilica from Rice Husk Ash\",\"authors\":\"Bertrand Zing Zing, Lin Marcellin Messi Ambassa, Eugene Ehabe Ejolle, Desire Placide Belibi Belibi, Charles Melea Kede\",\"doi\":\"10.1155/2024/3741615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Losses provoked by insect pests on stored cereals and legumes contribute immensely to reduce food security, especially in rural communities in Sub-Saharan Africa. The application of integrated control strategies, involving the use of synthetic pesticides, is often expensive and hazardous to humans and the environment. This study was conducted to optimize the production and use of biosilica from rice husk ashes, for the control of <i>Sitophilus zeamais</i> and <i>Acanthoscelides obtectus</i>, major insect pests of stored maize and common bean grains. The amorphous nature of the derived silica molecules coupled with the silanol and siloxane groups on their surfaces seemed to account for silica’s insecticidal effects on the pests, which were more on <i>A. obtectus</i> on common beans than <i>S. zeamais</i> on maize grains, with full mortalities obtained at doses of about 1.25 g per 50 g bean seeds and about 2.25 g per 50 g maize seeds, within 3 and 12 days, respectively. Similarly, the daily lethal dose (LD<sub>50</sub>) of silica powder required to obtain the mortality of half of the insects was lower on common beans than on maize seeds. The reduced phytotoxic activity of the biosilica on the stored common bean and maize grains indicates therefore that it could make an ecofriendly alternative to conventional protectants for small quantities of stored grains. However, large-scale studies are needed in order to evaluate its potential use in grain storage systems.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3741615\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3741615\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3741615","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Protection of Stored Common Bean and Maize Grains Using Optimally Synthesized Biosilica from Rice Husk Ash
Losses provoked by insect pests on stored cereals and legumes contribute immensely to reduce food security, especially in rural communities in Sub-Saharan Africa. The application of integrated control strategies, involving the use of synthetic pesticides, is often expensive and hazardous to humans and the environment. This study was conducted to optimize the production and use of biosilica from rice husk ashes, for the control of Sitophilus zeamais and Acanthoscelides obtectus, major insect pests of stored maize and common bean grains. The amorphous nature of the derived silica molecules coupled with the silanol and siloxane groups on their surfaces seemed to account for silica’s insecticidal effects on the pests, which were more on A. obtectus on common beans than S. zeamais on maize grains, with full mortalities obtained at doses of about 1.25 g per 50 g bean seeds and about 2.25 g per 50 g maize seeds, within 3 and 12 days, respectively. Similarly, the daily lethal dose (LD50) of silica powder required to obtain the mortality of half of the insects was lower on common beans than on maize seeds. The reduced phytotoxic activity of the biosilica on the stored common bean and maize grains indicates therefore that it could make an ecofriendly alternative to conventional protectants for small quantities of stored grains. However, large-scale studies are needed in order to evaluate its potential use in grain storage systems.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality