Liam Cronin, Debarshi Sen, Giulia Marasco, Thomas Matarazzo, Shamim Pakzad
{"title":"利用移动传感数据和传统系统识别技术进行桥梁监测","authors":"Liam Cronin, Debarshi Sen, Giulia Marasco, Thomas Matarazzo, Shamim Pakzad","doi":"10.1111/mice.13358","DOIUrl":null,"url":null,"abstract":"Mobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time-synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time-synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab-scale experiment for long-span bridges. In the lab-scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross-spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"75 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge monitoring using mobile sensing data with traditional system identification techniques\",\"authors\":\"Liam Cronin, Debarshi Sen, Giulia Marasco, Thomas Matarazzo, Shamim Pakzad\",\"doi\":\"10.1111/mice.13358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time-synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time-synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab-scale experiment for long-span bridges. In the lab-scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross-spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13358\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bridge monitoring using mobile sensing data with traditional system identification techniques
Mobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time-synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time-synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab-scale experiment for long-span bridges. In the lab-scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross-spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.