利用移动传感数据和传统系统识别技术进行桥梁监测

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-10-20 DOI:10.1111/mice.13358
Liam Cronin, Debarshi Sen, Giulia Marasco, Thomas Matarazzo, Shamim Pakzad
{"title":"利用移动传感数据和传统系统识别技术进行桥梁监测","authors":"Liam Cronin, Debarshi Sen, Giulia Marasco, Thomas Matarazzo, Shamim Pakzad","doi":"10.1111/mice.13358","DOIUrl":null,"url":null,"abstract":"Mobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time-synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time-synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab-scale experiment for long-span bridges. In the lab-scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross-spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"75 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge monitoring using mobile sensing data with traditional system identification techniques\",\"authors\":\"Liam Cronin, Debarshi Sen, Giulia Marasco, Thomas Matarazzo, Shamim Pakzad\",\"doi\":\"10.1111/mice.13358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time-synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time-synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab-scale experiment for long-span bridges. In the lab-scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross-spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13358\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

移动传感已成为空间密集型固定传感器网络的一种经济可行的替代方案,它利用了当今智能手机普及的众包数据。最近,现场实验证明,利用异步众包移动传感数据,可以估算桥梁模态频率和绝对模态振型(模态振型的绝对值,即不含相位信息的模态振型)。然而,要在同一环境下估算频率、全模态振型和阻尼比,还需要时间同步数据和改进的系统识别技术。本文提出的框架仅使用两个时间同步移动传感器来估算空间密集频率响应矩阵。随后,该矩阵可集成到现有的系统识别方法和结构健康监测平台中,包括自然激励技术的特征系统实现算法和频域分解。该方法通过数值和实验室规模的大跨度桥梁实验进行了测试。在实验室规模的实验中,小车上的同步智能手机穿越一座模型桥梁。利用两种系统识别方法对产生的交叉谱进行了分析,结果证明了所建议框架的有效性,对前六种模态(包括垂直和扭转模态)具有很高的准确性(模态保证标准值高于 0.94)。这种新型框架将移动传感的监测可扩展性与用户熟悉的传统系统识别技术相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridge monitoring using mobile sensing data with traditional system identification techniques
Mobile sensing has emerged as an economically viable alternative to spatially dense stationary sensor networks, leveraging crowdsourced data from today's widespread population of smartphones. Recently, field experiments have demonstrated that using asynchronous crowdsourced mobile sensing data, bridge modal frequencies, and absolute mode shapes (the absolute value of mode shapes, i.e., mode shapes without phase information) can be estimated. However, time-synchronized data and improved system identification techniques are necessary to estimate frequencies, full mode shapes, and damping ratios within the same context. This paper presents a framework that uses only two time-synchronous mobile sensors to estimate a spatially dense frequency response matrix. Subsequently, this matrix can be integrated into existing system identification methods and structural health monitoring platforms, including the natural excitation technique eigensystem realization algorithm and frequency domain decomposition. The methodology was tested numerically and using a lab-scale experiment for long-span bridges. In the lab-scale experiment, synchronized smartphones atop carts traverse a model bridge. The resulting cross-spectrum was analyzed with two system identification methods, and the efficacy of the proposed framework was demonstrated, yielding high accuracy (modal assurance criterion values above 0.94) for the first six modes, including both vertical and torsional. This novel framework combines the monitoring scalability of mobile sensing with user familiarity with traditional system identification techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion Smartphone-based high durable strain sensor with sub-pixel-level accuracy and adjustable camera position Reinforcement learning-based approach for urban road project scheduling considering alternative closure types Issue Information Cover Image, Volume 39, Issue 23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1