h-BN/GeSe 范德华异质结构中二维 GeSe 的半导体掺杂调制

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-10-21 DOI:10.1021/acs.jpcc.4c05079
Menghao Bi, Xiang Li, Zhe Wang, Ruiyang Chen, Leichuang Zhu, Zhengxiao Du, Cheng Zhang, Yongping Du, Fang Wu
{"title":"h-BN/GeSe 范德华异质结构中二维 GeSe 的半导体掺杂调制","authors":"Menghao Bi, Xiang Li, Zhe Wang, Ruiyang Chen, Leichuang Zhu, Zhengxiao Du, Cheng Zhang, Yongping Du, Fang Wu","doi":"10.1021/acs.jpcc.4c05079","DOIUrl":null,"url":null,"abstract":"Herein, a novel controllable and nondestructive semiconductor doping technique is proposed by introducing defects in the h-BN/GeSe van der Waals heterostructure. A perfect n-/p-type channel layer can be achieved through charge transfer between the defective h-BN substrate layer and the GeSe channel layer. The effect of this modulation doping strategy on the carrier mobility of the channel layers is also investigated. In the case of the h-BN/GeSe heterostructure with the introduction of boron vacancies, the electron mobility of 2D GeSe in the <i>x</i> (<i>y</i>) direction is 1479.11 (1343.95) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, and the hole mobility in the <i>x</i> (<i>y</i>) direction is 1031.88 (864.44) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. As for producing nitrogen vacancies in the h-BN/GeSe heterostructure, the electron mobility of 2D GeSe in the <i>x</i> (<i>y</i>) direction is predicted to be as high as 1643.77 (1678.14) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, and the hole mobility in the <i>x</i> (<i>y</i>) direction is about 1129.51 (1563.50) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, respectively. In contrast, the electron (hole) mobility in the <i>x</i>-direction is dramatically decreased to 705.29 (630.85) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, and the electron (hole) mobility in the <i>y</i>-direction is only 701.40 (481.37) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for the GeSe layer by using the traditional semiconductor doping method. The nondestructive doping strategy provides an effective method to modulate two-dimensional semiconductor channel materials while avoiding lattice damage, thus resulting in much higher carrier mobility. It indicates that the novel semiconductor doping technique has a great promising application in electronic and optoelectronic devices.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of Semiconductor Doping of 2D GeSe in h-BN/GeSe van der Waals Heterostructure\",\"authors\":\"Menghao Bi, Xiang Li, Zhe Wang, Ruiyang Chen, Leichuang Zhu, Zhengxiao Du, Cheng Zhang, Yongping Du, Fang Wu\",\"doi\":\"10.1021/acs.jpcc.4c05079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, a novel controllable and nondestructive semiconductor doping technique is proposed by introducing defects in the h-BN/GeSe van der Waals heterostructure. A perfect n-/p-type channel layer can be achieved through charge transfer between the defective h-BN substrate layer and the GeSe channel layer. The effect of this modulation doping strategy on the carrier mobility of the channel layers is also investigated. In the case of the h-BN/GeSe heterostructure with the introduction of boron vacancies, the electron mobility of 2D GeSe in the <i>x</i> (<i>y</i>) direction is 1479.11 (1343.95) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, and the hole mobility in the <i>x</i> (<i>y</i>) direction is 1031.88 (864.44) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. As for producing nitrogen vacancies in the h-BN/GeSe heterostructure, the electron mobility of 2D GeSe in the <i>x</i> (<i>y</i>) direction is predicted to be as high as 1643.77 (1678.14) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, and the hole mobility in the <i>x</i> (<i>y</i>) direction is about 1129.51 (1563.50) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, respectively. In contrast, the electron (hole) mobility in the <i>x</i>-direction is dramatically decreased to 705.29 (630.85) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, and the electron (hole) mobility in the <i>y</i>-direction is only 701.40 (481.37) cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for the GeSe layer by using the traditional semiconductor doping method. The nondestructive doping strategy provides an effective method to modulate two-dimensional semiconductor channel materials while avoiding lattice damage, thus resulting in much higher carrier mobility. It indicates that the novel semiconductor doping technique has a great promising application in electronic and optoelectronic devices.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c05079\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05079","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文通过在 h-BN/GeSe 范德华异质结构中引入缺陷,提出了一种新型的可控和无损半导体掺杂技术。通过缺陷 h-BN 衬底层和 GeSe 沟道层之间的电荷转移,可以实现完美的 n/p 型沟道层。我们还研究了这种调制掺杂策略对沟道层载流子迁移率的影响。在引入硼空位的 h-BN/GeSe 异质结构中,二维 GeSe 在 x (y) 方向上的电子迁移率为 1479.11 (1343.95) cm2 V-1 s-1,在 x (y) 方向上的空穴迁移率为 1031.88 (864.44) cm2 V-1 s-1。至于在 h-BN/GeSe 异质结构中产生氮空位,预测二维 GeSe 在 x(y)方向上的电子迁移率分别高达 1643.77 (1678.14) cm2 V-1 s-1,而在 x(y)方向上的空穴迁移率约为 1129.51 (1563.50) cm2 V-1 s-1。相比之下,采用传统半导体掺杂方法的 GeSe 层在 x 方向上的电子(空穴)迁移率急剧下降至 705.29 (630.85) cm2 V-1 s-1,而在 y 方向上的电子(空穴)迁移率仅为 701.40 (481.37) cm2 V-1 s-1。无损掺杂策略提供了一种有效的方法来调节二维半导体沟道材料,同时避免了晶格损伤,从而大大提高了载流子迁移率。这表明,新型半导体掺杂技术在电子和光电器件中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation of Semiconductor Doping of 2D GeSe in h-BN/GeSe van der Waals Heterostructure
Herein, a novel controllable and nondestructive semiconductor doping technique is proposed by introducing defects in the h-BN/GeSe van der Waals heterostructure. A perfect n-/p-type channel layer can be achieved through charge transfer between the defective h-BN substrate layer and the GeSe channel layer. The effect of this modulation doping strategy on the carrier mobility of the channel layers is also investigated. In the case of the h-BN/GeSe heterostructure with the introduction of boron vacancies, the electron mobility of 2D GeSe in the x (y) direction is 1479.11 (1343.95) cm2 V–1 s–1, and the hole mobility in the x (y) direction is 1031.88 (864.44) cm2 V–1 s–1. As for producing nitrogen vacancies in the h-BN/GeSe heterostructure, the electron mobility of 2D GeSe in the x (y) direction is predicted to be as high as 1643.77 (1678.14) cm2 V–1 s–1, and the hole mobility in the x (y) direction is about 1129.51 (1563.50) cm2 V–1 s–1, respectively. In contrast, the electron (hole) mobility in the x-direction is dramatically decreased to 705.29 (630.85) cm2 V–1 s–1, and the electron (hole) mobility in the y-direction is only 701.40 (481.37) cm2 V–1 s–1 for the GeSe layer by using the traditional semiconductor doping method. The nondestructive doping strategy provides an effective method to modulate two-dimensional semiconductor channel materials while avoiding lattice damage, thus resulting in much higher carrier mobility. It indicates that the novel semiconductor doping technique has a great promising application in electronic and optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Modulation of Semiconductor Doping of 2D GeSe in h-BN/GeSe van der Waals Heterostructure Molecular Insights into the Microscopic Behavior of CO2 Hydrates in Oceanic Sediments: Implications for Carbon Sequestration Pseudo Two-Dimensional Model for the Design of Fast-Charging Lithium-Ion Battery Electrodes Dirac States versus Nearly-Free-Electron States in Ternary C2As6(1–x)P6x Monolayers – A Density Functional Theory Study Nonadiabatic Couplings Facilitate Excitation Wavelength–Dependent Fluorescence in a Cyclooctatetraene-Based Polymorph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1