利用简单装置建立测量脑组织细胞内钾离子浓度的方法。

IF 3.1 Q2 NEUROSCIENCES AIMS Neuroscience Pub Date : 2024-08-26 eCollection Date: 2024-01-01 DOI:10.3934/Neuroscience.2024018
Takaya Iwamoto, Minori Fujita, Yukiko Futamata, Teruki Okada, Ryuta Morinaga, Airi Nishi, Toshihiko Kinjo, Koichi Kawada, Kyosuke Uno, Nobuyuki Kuramoto
{"title":"利用简单装置建立测量脑组织细胞内钾离子浓度的方法。","authors":"Takaya Iwamoto, Minori Fujita, Yukiko Futamata, Teruki Okada, Ryuta Morinaga, Airi Nishi, Toshihiko Kinjo, Koichi Kawada, Kyosuke Uno, Nobuyuki Kuramoto","doi":"10.3934/Neuroscience.2024018","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular potassium ion (K<sup>+</sup>) concentration is higher than extracellular K<sup>+</sup> concentration. Some cells maintain intracellular potassium levels by taking up extracellular potassium. However, investigating these details requires techniques to measure intracellular potassium concentrations. We established a method to easily measure intracellular potassium concentrations using a simpler electrode. The LAQUAtwin K-11 was capable of linearly quantifying potassium concentrations and was not affected by cellular constituents other than nucleic acids; however, it did not tolerate low temperatures. Interference caused by a high concentration of nucleic acids was eliminated by the addition of cations. It was also suggested that the concentration of nucleic acids in the cell suspension was not sufficiently high to interfere with the measurements. Intracellular potassium concentrations increased and decreased in response to extracellular potassium concentrations. Exposure to valinomycin did not decrease the potassium concentration, suggesting that re-uptake of the potassium released outside the cells occurred immediately. Additionally, potassium concentrations could be measured in the brain tissue homogenates using the device. This measurement method can track the relative changes in potassium concentration in cells under various conditions and in tissues of various disease models.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Establishment of a method to measure the intracellular potassium ion concentration of brain tissue using a simple device.\",\"authors\":\"Takaya Iwamoto, Minori Fujita, Yukiko Futamata, Teruki Okada, Ryuta Morinaga, Airi Nishi, Toshihiko Kinjo, Koichi Kawada, Kyosuke Uno, Nobuyuki Kuramoto\",\"doi\":\"10.3934/Neuroscience.2024018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intracellular potassium ion (K<sup>+</sup>) concentration is higher than extracellular K<sup>+</sup> concentration. Some cells maintain intracellular potassium levels by taking up extracellular potassium. However, investigating these details requires techniques to measure intracellular potassium concentrations. We established a method to easily measure intracellular potassium concentrations using a simpler electrode. The LAQUAtwin K-11 was capable of linearly quantifying potassium concentrations and was not affected by cellular constituents other than nucleic acids; however, it did not tolerate low temperatures. Interference caused by a high concentration of nucleic acids was eliminated by the addition of cations. It was also suggested that the concentration of nucleic acids in the cell suspension was not sufficiently high to interfere with the measurements. Intracellular potassium concentrations increased and decreased in response to extracellular potassium concentrations. Exposure to valinomycin did not decrease the potassium concentration, suggesting that re-uptake of the potassium released outside the cells occurred immediately. Additionally, potassium concentrations could be measured in the brain tissue homogenates using the device. This measurement method can track the relative changes in potassium concentration in cells under various conditions and in tissues of various disease models.</p>\",\"PeriodicalId\":7732,\"journal\":{\"name\":\"AIMS Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/Neuroscience.2024018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2024018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

细胞内钾离子(K+)浓度高于细胞外钾离子(K+)浓度。一些细胞通过吸收细胞外钾来维持细胞内钾的水平。然而,研究这些细节需要测量细胞内钾浓度的技术。我们建立了一种使用较简单电极轻松测量细胞内钾浓度的方法。LAQUAtwin K-11 能够线性地量化钾浓度,并且不受核酸以外的细胞成分的影响;但是,它不能耐受低温。通过添加阳离子,可以消除高浓度核酸造成的干扰。还有人认为,细胞悬浮液中的核酸浓度不足以干扰测量。细胞内钾浓度随细胞外钾浓度的变化而升高和降低。暴露于缬氨霉素不会降低钾浓度,这表明细胞外释放的钾立即被重新吸收。此外,该装置还能测量脑组织匀浆中的钾浓度。这种测量方法可以跟踪细胞在各种条件下以及各种疾病模型组织中钾浓度的相对变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment of a method to measure the intracellular potassium ion concentration of brain tissue using a simple device.

Intracellular potassium ion (K+) concentration is higher than extracellular K+ concentration. Some cells maintain intracellular potassium levels by taking up extracellular potassium. However, investigating these details requires techniques to measure intracellular potassium concentrations. We established a method to easily measure intracellular potassium concentrations using a simpler electrode. The LAQUAtwin K-11 was capable of linearly quantifying potassium concentrations and was not affected by cellular constituents other than nucleic acids; however, it did not tolerate low temperatures. Interference caused by a high concentration of nucleic acids was eliminated by the addition of cations. It was also suggested that the concentration of nucleic acids in the cell suspension was not sufficiently high to interfere with the measurements. Intracellular potassium concentrations increased and decreased in response to extracellular potassium concentrations. Exposure to valinomycin did not decrease the potassium concentration, suggesting that re-uptake of the potassium released outside the cells occurred immediately. Additionally, potassium concentrations could be measured in the brain tissue homogenates using the device. This measurement method can track the relative changes in potassium concentration in cells under various conditions and in tissues of various disease models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
期刊最新文献
Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies? The effects of right temporoparietal junction stimulation on embodiment, presence, and performance in teleoperation. Cognitive effects of brief and intensive neurofeedback treatment in schizophrenia: a single center pilot study. Novel perspective of therapeutic modules to overcome motor and nonmotor symptoms in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1