{"title":"磷石膏和油菜秸秆的复合生物炭对磷酸盐的吸附研究。","authors":"Yu Liang, Fengyu Li, Qin Li, Dongsheng He","doi":"10.1007/s10653-024-02253-3","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater containing phosphorus is often added by industrial activities, which is bad for the environment. In this study, composite biochar (PG-RS700) was prepared from phosphogypsum (PG) and rape straw (RS) for the treatment of phosphate in wastewater. SEM, FTIR, XRD and XPS characterization results showed that PG and RS were successfully combined. When PG-RS700 was dosed at 1.5 g/L and the phosphate solution concentration was 50 mg/L and pH = 8, the phosphate removal rate was 100% and the adsorption capacity was three times higher than the corresponding pure PG and RS. The quasi-secondary kinetic model indicated that the adsorption mechanism was chemisorption, and the maximum adsorption capacity for phosphate in the Langmuir isotherm model was 102.25 mg/g. Through pot experiment, the phosphorus adsorbed material obviously promoted the growth of plants. PG-RS700 can be used as a powerful adsorbent to treat phosphate in water and return it to soil as phosphate fertilizer.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"472"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the adsorption of phosphate by composite biochar of phosphogypsum and rape straw.\",\"authors\":\"Yu Liang, Fengyu Li, Qin Li, Dongsheng He\",\"doi\":\"10.1007/s10653-024-02253-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wastewater containing phosphorus is often added by industrial activities, which is bad for the environment. In this study, composite biochar (PG-RS700) was prepared from phosphogypsum (PG) and rape straw (RS) for the treatment of phosphate in wastewater. SEM, FTIR, XRD and XPS characterization results showed that PG and RS were successfully combined. When PG-RS700 was dosed at 1.5 g/L and the phosphate solution concentration was 50 mg/L and pH = 8, the phosphate removal rate was 100% and the adsorption capacity was three times higher than the corresponding pure PG and RS. The quasi-secondary kinetic model indicated that the adsorption mechanism was chemisorption, and the maximum adsorption capacity for phosphate in the Langmuir isotherm model was 102.25 mg/g. Through pot experiment, the phosphorus adsorbed material obviously promoted the growth of plants. PG-RS700 can be used as a powerful adsorbent to treat phosphate in water and return it to soil as phosphate fertilizer.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"472\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02253-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02253-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Study on the adsorption of phosphate by composite biochar of phosphogypsum and rape straw.
Wastewater containing phosphorus is often added by industrial activities, which is bad for the environment. In this study, composite biochar (PG-RS700) was prepared from phosphogypsum (PG) and rape straw (RS) for the treatment of phosphate in wastewater. SEM, FTIR, XRD and XPS characterization results showed that PG and RS were successfully combined. When PG-RS700 was dosed at 1.5 g/L and the phosphate solution concentration was 50 mg/L and pH = 8, the phosphate removal rate was 100% and the adsorption capacity was three times higher than the corresponding pure PG and RS. The quasi-secondary kinetic model indicated that the adsorption mechanism was chemisorption, and the maximum adsorption capacity for phosphate in the Langmuir isotherm model was 102.25 mg/g. Through pot experiment, the phosphorus adsorbed material obviously promoted the growth of plants. PG-RS700 can be used as a powerful adsorbent to treat phosphate in water and return it to soil as phosphate fertilizer.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.