带有先导音呼吸运动导航仪的自由呼吸 qRF-MRF,用于 3 T 下人体的 T1、T2、T2* 和非共振绘图。

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-10-16 DOI:10.1007/s10334-024-01209-z
Madison E Kretzler, Sherry S Huang, Jessie E P Sun, Leonardo K Bittencourt, Yong Chen, Mark A Griswold, Rasim Boyacioglu
{"title":"带有先导音呼吸运动导航仪的自由呼吸 qRF-MRF,用于 3 T 下人体的 T1、T2、T2* 和非共振绘图。","authors":"Madison E Kretzler, Sherry S Huang, Jessie E P Sun, Leonardo K Bittencourt, Yong Chen, Mark A Griswold, Rasim Boyacioglu","doi":"10.1007/s10334-024-01209-z","DOIUrl":null,"url":null,"abstract":"<p><p>Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T<sub>1</sub> and T<sub>2</sub>. This work includes T<sub>2</sub>* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T<sub>1</sub>, T<sub>2</sub>) with T<sub>2</sub>* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-breathing qRF-MRF with pilot tone respiratory motion navigator for T<sub>1</sub>, T<sub>2</sub>, T<sub>2</sub>*, and off-resonance mapping of the human body at 3 T.\",\"authors\":\"Madison E Kretzler, Sherry S Huang, Jessie E P Sun, Leonardo K Bittencourt, Yong Chen, Mark A Griswold, Rasim Boyacioglu\",\"doi\":\"10.1007/s10334-024-01209-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T<sub>1</sub> and T<sub>2</sub>. This work includes T<sub>2</sub>* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T<sub>1</sub>, T<sub>2</sub>) with T<sub>2</sub>* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01209-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01209-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

标准的腹部磁共振成像定量技术耗时长,需要屏气,而且容易受到病人运动伪影的影响。磁共振指纹(MRF)具有天然的多参数特性,可量化多种组织属性,包括 T1 和 T2。这项研究利用先导音导航器将 T2* 和非共振映射纳入自由呼吸 MRF 框架。新的采集和重建与当前的临床标准进行了比较。前瞻性。十名志愿者。3 T 扫描仪、二次射频 MRF、平衡 SSFP、反转恢复自旋回波、LiverLab。两名腹部成像研究人员对 10 名健康成年志愿者的肝脏、脾脏、胰腺、肾脏(皮质和髓质)和椎旁肌的 MRI ROI 进行了评估,分别进行了临床标准、屏气(BH)qRF-MRF 和带有先导音(PT)采集的自由呼吸 qRF-MRF 采集。采用Bland-Altman分析和Student's T检验来评估和比较各自的ROI分析。屏气(BH)和带先导音(PT)的自由呼吸 qRF-MRF 结果之间的定量值与临床标准 T1 和 T2 定量绘图以及 Dixon q-VIBE(使用西门子 LiverLAB 采集)显示出良好的一致性。在这项工作中,我们展示了带有 T2* 的自由呼吸腹部 MRF(T1、T2)结果,其定量结果可与目前的屏气 MRF 和临床技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Free-breathing qRF-MRF with pilot tone respiratory motion navigator for T1, T2, T2*, and off-resonance mapping of the human body at 3 T.

Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T1 and T2. This work includes T2* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T1, T2) with T2* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts. FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. PyFaceWipe: a new defacing tool for almost any MRI contrast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1