Madison E Kretzler, Sherry S Huang, Jessie E P Sun, Leonardo K Bittencourt, Yong Chen, Mark A Griswold, Rasim Boyacioglu
{"title":"带有先导音呼吸运动导航仪的自由呼吸 qRF-MRF,用于 3 T 下人体的 T1、T2、T2* 和非共振绘图。","authors":"Madison E Kretzler, Sherry S Huang, Jessie E P Sun, Leonardo K Bittencourt, Yong Chen, Mark A Griswold, Rasim Boyacioglu","doi":"10.1007/s10334-024-01209-z","DOIUrl":null,"url":null,"abstract":"<p><p>Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T<sub>1</sub> and T<sub>2</sub>. This work includes T<sub>2</sub>* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T<sub>1</sub>, T<sub>2</sub>) with T<sub>2</sub>* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-breathing qRF-MRF with pilot tone respiratory motion navigator for T<sub>1</sub>, T<sub>2</sub>, T<sub>2</sub>*, and off-resonance mapping of the human body at 3 T.\",\"authors\":\"Madison E Kretzler, Sherry S Huang, Jessie E P Sun, Leonardo K Bittencourt, Yong Chen, Mark A Griswold, Rasim Boyacioglu\",\"doi\":\"10.1007/s10334-024-01209-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T<sub>1</sub> and T<sub>2</sub>. This work includes T<sub>2</sub>* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T<sub>1</sub>, T<sub>2</sub>) with T<sub>2</sub>* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01209-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01209-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Free-breathing qRF-MRF with pilot tone respiratory motion navigator for T1, T2, T2*, and off-resonance mapping of the human body at 3 T.
Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T1 and T2. This work includes T2* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T1, T2) with T2* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.