{"title":"表面含有脑源性神经营养因子的外泌体能使月经血衍生间充质干细胞增殖:蛋白质药物的靶向递送。","authors":"Fatemeh Siamian Gorji, Seyedeh Farzaneh Mahdavian, Shabanali Khodashenas, Zeinab Rezaee Kiasari, Reza Valadan, Saeed Khalili, Mohammad Reza Mahdavi","doi":"10.1007/s10930-024-10234-9","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the efficacy of brain derived neurotrophic factor (BDNF) in neuro-regenerative medicine, it can’t pass the blood–brain barrier. Recently, exosomes have been harnessed for targeted delivery of therapeutics into brain. Given these facts, an engineered exosome capable of BDNF expression on the surface would be an amenable tool for drug delivery. The BDNF gene was cloned into a plex-lamp lentiviral vector and virus particles were packaged using the Torano method. HEK293T cells were transduced by the purified viruses to produce and purify recombinant exosomes displaying the fusion protein on their surfaces. Western blot, Zeta sizer, TEM, and ELISA methods were used for exosome characterization. The effect of engineered exosomes on menstrual blood-derived mesenchymal stem cells (Mens-MSCs) proliferation was evaluated by cell counting assay, MTT assay, and qPCR on the <i>bcl2</i> and <i>nestin</i> genes. Approximately, 1.8 × 10<sup>8</sup> TdU/ml of the viral particles was purified from the transfected cells and transduced into the HEK293T. Western blot and ELISA methods confirmed the surface display of the LAMP-BDNF fusion. TEM graphs and Zeta sizer results confirmed the morphology and the size of purified exosomes. Treatment of Mens-MSCs with the targeted exosomes augmented the expression level of <i>bcl2</i> and <i>nestin</i> genes, increased the cell proliferation, and elevated the cell number. Chimeric BDNF on the exosome surface could retain its biological activity and elevate the expression of <i>bcl2</i> and <i>nestin</i> genes. Moreover, these exosomes are capable of elevating the Mens-MSCs proliferation.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 6","pages":"1070 - 1082"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug\",\"authors\":\"Fatemeh Siamian Gorji, Seyedeh Farzaneh Mahdavian, Shabanali Khodashenas, Zeinab Rezaee Kiasari, Reza Valadan, Saeed Khalili, Mohammad Reza Mahdavi\",\"doi\":\"10.1007/s10930-024-10234-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the efficacy of brain derived neurotrophic factor (BDNF) in neuro-regenerative medicine, it can’t pass the blood–brain barrier. Recently, exosomes have been harnessed for targeted delivery of therapeutics into brain. Given these facts, an engineered exosome capable of BDNF expression on the surface would be an amenable tool for drug delivery. The BDNF gene was cloned into a plex-lamp lentiviral vector and virus particles were packaged using the Torano method. HEK293T cells were transduced by the purified viruses to produce and purify recombinant exosomes displaying the fusion protein on their surfaces. Western blot, Zeta sizer, TEM, and ELISA methods were used for exosome characterization. The effect of engineered exosomes on menstrual blood-derived mesenchymal stem cells (Mens-MSCs) proliferation was evaluated by cell counting assay, MTT assay, and qPCR on the <i>bcl2</i> and <i>nestin</i> genes. Approximately, 1.8 × 10<sup>8</sup> TdU/ml of the viral particles was purified from the transfected cells and transduced into the HEK293T. Western blot and ELISA methods confirmed the surface display of the LAMP-BDNF fusion. TEM graphs and Zeta sizer results confirmed the morphology and the size of purified exosomes. Treatment of Mens-MSCs with the targeted exosomes augmented the expression level of <i>bcl2</i> and <i>nestin</i> genes, increased the cell proliferation, and elevated the cell number. Chimeric BDNF on the exosome surface could retain its biological activity and elevate the expression of <i>bcl2</i> and <i>nestin</i> genes. Moreover, these exosomes are capable of elevating the Mens-MSCs proliferation.</p></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":\"43 6\",\"pages\":\"1070 - 1082\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-024-10234-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10234-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug
Despite the efficacy of brain derived neurotrophic factor (BDNF) in neuro-regenerative medicine, it can’t pass the blood–brain barrier. Recently, exosomes have been harnessed for targeted delivery of therapeutics into brain. Given these facts, an engineered exosome capable of BDNF expression on the surface would be an amenable tool for drug delivery. The BDNF gene was cloned into a plex-lamp lentiviral vector and virus particles were packaged using the Torano method. HEK293T cells were transduced by the purified viruses to produce and purify recombinant exosomes displaying the fusion protein on their surfaces. Western blot, Zeta sizer, TEM, and ELISA methods were used for exosome characterization. The effect of engineered exosomes on menstrual blood-derived mesenchymal stem cells (Mens-MSCs) proliferation was evaluated by cell counting assay, MTT assay, and qPCR on the bcl2 and nestin genes. Approximately, 1.8 × 108 TdU/ml of the viral particles was purified from the transfected cells and transduced into the HEK293T. Western blot and ELISA methods confirmed the surface display of the LAMP-BDNF fusion. TEM graphs and Zeta sizer results confirmed the morphology and the size of purified exosomes. Treatment of Mens-MSCs with the targeted exosomes augmented the expression level of bcl2 and nestin genes, increased the cell proliferation, and elevated the cell number. Chimeric BDNF on the exosome surface could retain its biological activity and elevate the expression of bcl2 and nestin genes. Moreover, these exosomes are capable of elevating the Mens-MSCs proliferation.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.