{"title":"脑血流时间分辨激光斑点对比成像(TR-LSCI)","authors":"Faraneh Fathi;Siavash Mazdeyasna;Dara Singh;Chong Huang;Mehrana Mohtasebi;Xuhui Liu;Samaneh Rabienia Haratbar;Mingjun Zhao;Li Chen;Arin Can Ulku;Paul Mos;Claudio Bruschini;Edoardo Charbon;Lei Chen;Guoqiang Yu","doi":"10.1109/TMI.2024.3486084","DOIUrl":null,"url":null,"abstract":"To address many of the deficiencies in optical neuroimaging technologies, such as poor tempo-spatial resolution, low penetration depth, contact-based measurement, and time-consuming image reconstruction, a novel, noncontact, portable, time-resolved laser speckle contrast imaging (TR-LSCI) technique has been developed for continuous, fast, and high-resolution 2D mapping of cerebral blood flow (CBF) at different depths of the head. TR-LSCI illuminates the head with picosecond-pulsed, coherent, widefield near-infrared light and synchronizes a fast, high-resolution, gated single-photon avalanche diode camera to selectively collect diffuse photons with longer pathlengths through the head, thus improving the accuracy of CBF measurement in the deep brain. The reconstruction of a CBF map was dramatically expedited by incorporating convolution functions with parallel computations. The performance of TR-LSCI was evaluated using head-simulating phantoms with known properties and in-vivo rodents with varied hemodynamic challenges to the brain. TR-LSCI enabled mapping CBF variations at different depths with a sampling rate of up to 1 Hz and spatial resolutions ranging from tens/hundreds of micrometers on rodent head surfaces to 1-2 millimeters in deep brains. With additional improvements and validation in larger populations against established methods, we anticipate offering a noncontact, fast, high-resolution, portable, and affordable brain imager for fundamental neuroscience research in animals and for translational studies in humans.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1206-1217"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Resolved Laser Speckle Contrast Imaging (TR-LSCI) of Cerebral Blood Flow\",\"authors\":\"Faraneh Fathi;Siavash Mazdeyasna;Dara Singh;Chong Huang;Mehrana Mohtasebi;Xuhui Liu;Samaneh Rabienia Haratbar;Mingjun Zhao;Li Chen;Arin Can Ulku;Paul Mos;Claudio Bruschini;Edoardo Charbon;Lei Chen;Guoqiang Yu\",\"doi\":\"10.1109/TMI.2024.3486084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address many of the deficiencies in optical neuroimaging technologies, such as poor tempo-spatial resolution, low penetration depth, contact-based measurement, and time-consuming image reconstruction, a novel, noncontact, portable, time-resolved laser speckle contrast imaging (TR-LSCI) technique has been developed for continuous, fast, and high-resolution 2D mapping of cerebral blood flow (CBF) at different depths of the head. TR-LSCI illuminates the head with picosecond-pulsed, coherent, widefield near-infrared light and synchronizes a fast, high-resolution, gated single-photon avalanche diode camera to selectively collect diffuse photons with longer pathlengths through the head, thus improving the accuracy of CBF measurement in the deep brain. The reconstruction of a CBF map was dramatically expedited by incorporating convolution functions with parallel computations. The performance of TR-LSCI was evaluated using head-simulating phantoms with known properties and in-vivo rodents with varied hemodynamic challenges to the brain. TR-LSCI enabled mapping CBF variations at different depths with a sampling rate of up to 1 Hz and spatial resolutions ranging from tens/hundreds of micrometers on rodent head surfaces to 1-2 millimeters in deep brains. With additional improvements and validation in larger populations against established methods, we anticipate offering a noncontact, fast, high-resolution, portable, and affordable brain imager for fundamental neuroscience research in animals and for translational studies in humans.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 3\",\"pages\":\"1206-1217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734408/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10734408/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-Resolved Laser Speckle Contrast Imaging (TR-LSCI) of Cerebral Blood Flow
To address many of the deficiencies in optical neuroimaging technologies, such as poor tempo-spatial resolution, low penetration depth, contact-based measurement, and time-consuming image reconstruction, a novel, noncontact, portable, time-resolved laser speckle contrast imaging (TR-LSCI) technique has been developed for continuous, fast, and high-resolution 2D mapping of cerebral blood flow (CBF) at different depths of the head. TR-LSCI illuminates the head with picosecond-pulsed, coherent, widefield near-infrared light and synchronizes a fast, high-resolution, gated single-photon avalanche diode camera to selectively collect diffuse photons with longer pathlengths through the head, thus improving the accuracy of CBF measurement in the deep brain. The reconstruction of a CBF map was dramatically expedited by incorporating convolution functions with parallel computations. The performance of TR-LSCI was evaluated using head-simulating phantoms with known properties and in-vivo rodents with varied hemodynamic challenges to the brain. TR-LSCI enabled mapping CBF variations at different depths with a sampling rate of up to 1 Hz and spatial resolutions ranging from tens/hundreds of micrometers on rodent head surfaces to 1-2 millimeters in deep brains. With additional improvements and validation in larger populations against established methods, we anticipate offering a noncontact, fast, high-resolution, portable, and affordable brain imager for fundamental neuroscience research in animals and for translational studies in humans.