Erpeng Zhang, Xiuzhu Jia, Yanan Wu, Jing Liu, Lu Yu
{"title":"级联冗余卷积编码器-解码器网络利用气管声改善了麻醉后护理病房患者呼吸暂停检测性能。","authors":"Erpeng Zhang, Xiuzhu Jia, Yanan Wu, Jing Liu, Lu Yu","doi":"10.1088/2057-1976/ad89c6","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Methods of detecting apnea based on acoustic features can be prone to misdiagnosed and missed diagnoses due to the influence of noise. The aim of this paper is to improve the performance of apnea detection algorithms in the Post Anesthesia Care Unit (PACU) using a denoising method that processes tracheal sounds without the need for separate background noise.<i>Approach</i>. Tracheal sound data from laboratory subjects was collected using a microphone. Record a segment of clinical background noise and clean tracheal sound data to synthesize the noisy tracheal sound data according to a specified signal-to-noise ratio. Extract the frequency-domain features of the tracheal sounds using the Short Time Fourier Transform (STFT) and input the Cascaded Redundant Convolutional Encoder-Decoder network (CR-CED) network for training. Patients' tracheal sound data collected in the PACU were then fed into the CR-CED network as test data and inversely transformed by STFT to obtain denoised tracheal sounds. The apnea detection algorithm was used to detect the tracheal sound after denoising.<i>Results</i>. Apnea events were correctly detected 207 times and normal respiratory events 11,305 times using tracheal sounds denoised by the CR-CED network. The sensitivity and specificity of apnea detection were 88% and 98.6%, respectively.<i>Significance</i>. The apnea detection results of tracheal sounds after CR-CED network denoising in the PACU are accurate and reliable. Tracheal sound can be denoised using this approach without separate background noise. It effectively improves the applicability of the tracheal sound denoising method in the medical environment while ensuring its correctness.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascaded redundant convolutional encoder-decoder network improved apnea detection performance using tracheal sounds in post anesthesia care unit patients.\",\"authors\":\"Erpeng Zhang, Xiuzhu Jia, Yanan Wu, Jing Liu, Lu Yu\",\"doi\":\"10.1088/2057-1976/ad89c6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Methods of detecting apnea based on acoustic features can be prone to misdiagnosed and missed diagnoses due to the influence of noise. The aim of this paper is to improve the performance of apnea detection algorithms in the Post Anesthesia Care Unit (PACU) using a denoising method that processes tracheal sounds without the need for separate background noise.<i>Approach</i>. Tracheal sound data from laboratory subjects was collected using a microphone. Record a segment of clinical background noise and clean tracheal sound data to synthesize the noisy tracheal sound data according to a specified signal-to-noise ratio. Extract the frequency-domain features of the tracheal sounds using the Short Time Fourier Transform (STFT) and input the Cascaded Redundant Convolutional Encoder-Decoder network (CR-CED) network for training. Patients' tracheal sound data collected in the PACU were then fed into the CR-CED network as test data and inversely transformed by STFT to obtain denoised tracheal sounds. The apnea detection algorithm was used to detect the tracheal sound after denoising.<i>Results</i>. Apnea events were correctly detected 207 times and normal respiratory events 11,305 times using tracheal sounds denoised by the CR-CED network. The sensitivity and specificity of apnea detection were 88% and 98.6%, respectively.<i>Significance</i>. The apnea detection results of tracheal sounds after CR-CED network denoising in the PACU are accurate and reliable. Tracheal sound can be denoised using this approach without separate background noise. It effectively improves the applicability of the tracheal sound denoising method in the medical environment while ensuring its correctness.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad89c6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad89c6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Cascaded redundant convolutional encoder-decoder network improved apnea detection performance using tracheal sounds in post anesthesia care unit patients.
Objective. Methods of detecting apnea based on acoustic features can be prone to misdiagnosed and missed diagnoses due to the influence of noise. The aim of this paper is to improve the performance of apnea detection algorithms in the Post Anesthesia Care Unit (PACU) using a denoising method that processes tracheal sounds without the need for separate background noise.Approach. Tracheal sound data from laboratory subjects was collected using a microphone. Record a segment of clinical background noise and clean tracheal sound data to synthesize the noisy tracheal sound data according to a specified signal-to-noise ratio. Extract the frequency-domain features of the tracheal sounds using the Short Time Fourier Transform (STFT) and input the Cascaded Redundant Convolutional Encoder-Decoder network (CR-CED) network for training. Patients' tracheal sound data collected in the PACU were then fed into the CR-CED network as test data and inversely transformed by STFT to obtain denoised tracheal sounds. The apnea detection algorithm was used to detect the tracheal sound after denoising.Results. Apnea events were correctly detected 207 times and normal respiratory events 11,305 times using tracheal sounds denoised by the CR-CED network. The sensitivity and specificity of apnea detection were 88% and 98.6%, respectively.Significance. The apnea detection results of tracheal sounds after CR-CED network denoising in the PACU are accurate and reliable. Tracheal sound can be denoised using this approach without separate background noise. It effectively improves the applicability of the tracheal sound denoising method in the medical environment while ensuring its correctness.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.