在国际空间站中以相当于 1-5 周的极低持续剂量率照射伽马射线后观察到的体外加速老化效应。

IF 5.1 2区 生物学 Q2 CELL BIOLOGY Cells Pub Date : 2024-10-15 DOI:10.3390/cells13201703
Juliette Restier-Verlet, Mélanie L Ferlazzo, Adeline Granzotto, Joëlle Al-Choboq, Camélia Bellemou, Maxime Estavoyer, Florentin Lecomte, Michel Bourguignon, Laurent Pujo-Menjouet, Nicolas Foray
{"title":"在国际空间站中以相当于 1-5 周的极低持续剂量率照射伽马射线后观察到的体外加速老化效应。","authors":"Juliette Restier-Verlet, Mélanie L Ferlazzo, Adeline Granzotto, Joëlle Al-Choboq, Camélia Bellemou, Maxime Estavoyer, Florentin Lecomte, Michel Bourguignon, Laurent Pujo-Menjouet, Nicolas Foray","doi":"10.3390/cells13201703","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation impacting astronauts in their spacecraft come from a \"bath\" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a \"stochastic rain\" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506070/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1-5 Weeks in International Space Station.\",\"authors\":\"Juliette Restier-Verlet, Mélanie L Ferlazzo, Adeline Granzotto, Joëlle Al-Choboq, Camélia Bellemou, Maxime Estavoyer, Florentin Lecomte, Michel Bourguignon, Laurent Pujo-Menjouet, Nicolas Foray\",\"doi\":\"10.3390/cells13201703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiation impacting astronauts in their spacecraft come from a \\\"bath\\\" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a \\\"stochastic rain\\\" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13201703\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13201703","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

航天器中对宇航员产生影响的辐射来自于到达心脏和骨骼等深层组织的高能射线 "浴"(每个任务日 0.1-0.5 mGy),以及来自屏蔽和影响皮肤和镜片等表面组织的低能粒子 "随机雨"。然而,地球上无法同时再现这两个组成部分。火星模拟器设施(法国图卢兹大学)通过一个装有钍盐的袋子,持续释放出 120 mSv/y 的辐射,与国际空间站(ISS)的辐射量相当。通过使用免疫荧光技术,我们评估了在国际空间站中暴露 1-5 周所诱发的 DNA 双链断裂(DSB)情况,并确定了上述人体组织在太空探索中的风险。所有受测组织都诱发了 DSB,其累积率与剂量成正比(皮肤约为 40DSB/Gy,晶状体为其 3 倍)。在所测试的晶状体、骨骼和对辐射敏感的皮肤细胞中,在暴露的第 1 至第 3 周,观察到磷酰化形式的共济失调毛细血管扩张症突变蛋白(pATM)在核周定位。由于 pATM 冠被证明反映了加速衰老,这些发现表明 120 mSv/y 的低剂量率可能会加速受测组织的衰老过程。已经提出了一个关于 pATM 冠形成和消失的数学模型。为了更好地评估与空间探索有关的风险,需要进行进一步的调查,以记录这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1-5 Weeks in International Space Station.

Radiation impacting astronauts in their spacecraft come from a "bath" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a "stochastic rain" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Asparagine614 Determines the Transport and Function of the Murine Anti-Aging Protein Klotho. N6-Methyladenosine RNA Modification Regulates the Differential Muscle Development in Large White and Ningxiang Pigs. Comparative Analysis of Extracellular Vesicles from Cytotoxic CD8+ αβ T Cells and γδ T Cells. Correction: Szymanska et al. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023, 12, 2835. DNA-Binding Protein A Is Actively Secreted in a Calcium-and Inflammasome-Dependent Manner and Negatively Influences Tubular Cell Survival.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1