Alina Ionela Stancu, Eliza Oprea, Lia Mara Dițu, Anton Ficai, Cornelia-Ioana Ilie, Irinel Adriana Badea, Mihaela Buleandra, Oana Brîncoveanu, Mihaela Violeta Ghica, Ionela Avram, Cristina Elena Dinu Pîrvu, Magdalena Mititelu
{"title":"开发、优化和评估具有抗菌活性的环糊精复合物和挥发油新型凝胶配方。","authors":"Alina Ionela Stancu, Eliza Oprea, Lia Mara Dițu, Anton Ficai, Cornelia-Ioana Ilie, Irinel Adriana Badea, Mihaela Buleandra, Oana Brîncoveanu, Mihaela Violeta Ghica, Ionela Avram, Cristina Elena Dinu Pîrvu, Magdalena Mititelu","doi":"10.3390/gels10100645","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop and evaluate hydrogels containing a cyclodextrin complex with clove essential oil and other free volatile oils with antimicrobial properties (tea tree and rosemary essential oils), focusing on their pharmaco-technical and rheological characteristics. The formulations varied in the Carbopol 940 (a hydrophilic polymer) and volatile oils' concentrations. Rheological analysis indicated that the gels displayed pseudoplastic behavior, with the flow index (n) values below 1, ensuring appropriate consistency and handling. The results showed that increasing the Carbopol concentration significantly enhanced the yield stress, consistency index, and viscosity, with gel B, containing 1% Carbopol, 1.5% tea tree essential oil, and 1.5% rosemary essential oil, demonstrating optimal stability and rheological properties. At the same time, the concentration of volatile oils was found to modulate the gels' flow parameters, but their effect was less pronounced than that of the gel-forming polymer. Antimicrobial testing revealed that both gel B and gel E (containing 1% Carbopol, 2% tea tree essential oil, and 2% rosemary essential oil) exhibited antimicrobial activity against Gram-positive, Gram-negative bacteria, and <i>Candida</i> spp., with gel E showing superior efficacy against <i>Candida tropicalis</i>. The antimicrobial effects were likely influenced by the higher concentrations of tea tree and rosemary essential oils in gel E. Overall, the study demonstrates that the concentration of Carbopol 940 primarily determines the gel's rheological behavior, while volatile oil concentration modulates antimicrobial effectiveness.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development, Optimization, and Evaluation of New Gel Formulations with Cyclodextrin Complexes and Volatile Oils with Antimicrobial Activity.\",\"authors\":\"Alina Ionela Stancu, Eliza Oprea, Lia Mara Dițu, Anton Ficai, Cornelia-Ioana Ilie, Irinel Adriana Badea, Mihaela Buleandra, Oana Brîncoveanu, Mihaela Violeta Ghica, Ionela Avram, Cristina Elena Dinu Pîrvu, Magdalena Mititelu\",\"doi\":\"10.3390/gels10100645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to develop and evaluate hydrogels containing a cyclodextrin complex with clove essential oil and other free volatile oils with antimicrobial properties (tea tree and rosemary essential oils), focusing on their pharmaco-technical and rheological characteristics. The formulations varied in the Carbopol 940 (a hydrophilic polymer) and volatile oils' concentrations. Rheological analysis indicated that the gels displayed pseudoplastic behavior, with the flow index (n) values below 1, ensuring appropriate consistency and handling. The results showed that increasing the Carbopol concentration significantly enhanced the yield stress, consistency index, and viscosity, with gel B, containing 1% Carbopol, 1.5% tea tree essential oil, and 1.5% rosemary essential oil, demonstrating optimal stability and rheological properties. At the same time, the concentration of volatile oils was found to modulate the gels' flow parameters, but their effect was less pronounced than that of the gel-forming polymer. Antimicrobial testing revealed that both gel B and gel E (containing 1% Carbopol, 2% tea tree essential oil, and 2% rosemary essential oil) exhibited antimicrobial activity against Gram-positive, Gram-negative bacteria, and <i>Candida</i> spp., with gel E showing superior efficacy against <i>Candida tropicalis</i>. The antimicrobial effects were likely influenced by the higher concentrations of tea tree and rosemary essential oils in gel E. Overall, the study demonstrates that the concentration of Carbopol 940 primarily determines the gel's rheological behavior, while volatile oil concentration modulates antimicrobial effectiveness.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10100645\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100645","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在开发和评估含有环糊精复合物、丁香精油和其他具有抗菌特性的游离挥发油(茶树精油和迷迭香精油)的水凝胶,重点关注其药理和流变特性。配方中的 Carbopol 940(一种亲水性聚合物)和挥发油浓度各不相同。流变分析表明,凝胶具有假塑性行为,流动指数(n)值低于 1,从而确保了适当的一致性和操作性。结果表明,增加 Carbopol 浓度可显著提高屈服应力、稠度指数和粘度,其中凝胶 B 含有 1%的 Carbopol、1.5% 的茶树精油和 1.5% 的迷迭香精油,具有最佳的稳定性和流变特性。同时,研究还发现挥发油的浓度也会调节凝胶的流动参数,但其影响不如凝胶形成聚合物明显。抗菌测试表明,凝胶B和凝胶E(含1%Carbopol、2%茶树精油和2%迷迭香精油)对革兰氏阳性菌、革兰氏阴性菌和念珠菌属都具有抗菌活性,其中凝胶E对热带念珠菌的抗菌效果更佳。抗菌效果可能受到凝胶 E 中较高浓度的茶树精油和迷迭香精油的影响。总之,研究表明 Carbopol 940 的浓度主要决定了凝胶的流变性能,而挥发油的浓度则会调节抗菌效果。
Development, Optimization, and Evaluation of New Gel Formulations with Cyclodextrin Complexes and Volatile Oils with Antimicrobial Activity.
This study aimed to develop and evaluate hydrogels containing a cyclodextrin complex with clove essential oil and other free volatile oils with antimicrobial properties (tea tree and rosemary essential oils), focusing on their pharmaco-technical and rheological characteristics. The formulations varied in the Carbopol 940 (a hydrophilic polymer) and volatile oils' concentrations. Rheological analysis indicated that the gels displayed pseudoplastic behavior, with the flow index (n) values below 1, ensuring appropriate consistency and handling. The results showed that increasing the Carbopol concentration significantly enhanced the yield stress, consistency index, and viscosity, with gel B, containing 1% Carbopol, 1.5% tea tree essential oil, and 1.5% rosemary essential oil, demonstrating optimal stability and rheological properties. At the same time, the concentration of volatile oils was found to modulate the gels' flow parameters, but their effect was less pronounced than that of the gel-forming polymer. Antimicrobial testing revealed that both gel B and gel E (containing 1% Carbopol, 2% tea tree essential oil, and 2% rosemary essential oil) exhibited antimicrobial activity against Gram-positive, Gram-negative bacteria, and Candida spp., with gel E showing superior efficacy against Candida tropicalis. The antimicrobial effects were likely influenced by the higher concentrations of tea tree and rosemary essential oils in gel E. Overall, the study demonstrates that the concentration of Carbopol 940 primarily determines the gel's rheological behavior, while volatile oil concentration modulates antimicrobial effectiveness.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.