探索用海藻酸钙凝胶包裹副乳酸杆菌以提高功能性面包制作的稳定性

IF 5 3区 化学 Q1 POLYMER SCIENCE Gels Pub Date : 2024-10-08 DOI:10.3390/gels10100641
Daiva Zadeike, Zydrune Gaizauskaite, Loreta Basinskiene, Renata Zvirdauskiene, Dalia Cizeikiene
{"title":"探索用海藻酸钙凝胶包裹副乳酸杆菌以提高功能性面包制作的稳定性","authors":"Daiva Zadeike, Zydrune Gaizauskaite, Loreta Basinskiene, Renata Zvirdauskiene, Dalia Cizeikiene","doi":"10.3390/gels10100641","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on evaluating the efficiency of acid-tolerant <i>Lacticaseibacillus paracasei</i> bacteria encapsulated in an alginate-based gel matrix during repeated sourdough fermentation cycles, as well as their preservation during storage and throughout baking at high temperature. A double-coating procedure was applied, involving the encapsulation of bacterial cells in calcium alginate, which was further coated with chitosan. The encapsulation efficiency (EE) did not show significant difference between alginate and alginate-chitosan (97.97 and 96.71%, respectively). The higher number of <i>L. paracasei</i> bacteria was preserved in double-coated microbeads, with survivability rates of 89.51% and 96.90% in wet and dried microbeads, respectively. Encapsulated bacteria demonstrated effective fermentation ability, while double gel-coated cells exhibited slower acidification during sourdough fermentation, maintaining higher efficiency in the second fermentation cycle. The addition of freeze-dried, alginate-based gel-encapsulated bacteria (2-4%, <i>w</i>/<i>w</i> flour) significantly (<i>p</i> < 0.05) improved bread quality and extended its shelf life. A double-layer coating (alginate-chitosan) can be introduced as an innovative strategy for regulating the release of lactic acid bacteria and optimizing fermentation processes. Powdered alginate or alginate-chitosan gel-based <i>L. paracasei</i> microcapsules, at appropriate concentrations, can be used in the production of baked goods with acceptable quality and sensory properties, achieving a lactic acid bacteria count of approximately 10<sup>6</sup> CFU/g in the crumb, thereby meeting the standard criteria for probiotic bakery products.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506860/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring Calcium Alginate-Based Gels for Encapsulation of <i>Lacticaseibacillus paracasei</i> to Enhance Stability in Functional Breadmaking.\",\"authors\":\"Daiva Zadeike, Zydrune Gaizauskaite, Loreta Basinskiene, Renata Zvirdauskiene, Dalia Cizeikiene\",\"doi\":\"10.3390/gels10100641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on evaluating the efficiency of acid-tolerant <i>Lacticaseibacillus paracasei</i> bacteria encapsulated in an alginate-based gel matrix during repeated sourdough fermentation cycles, as well as their preservation during storage and throughout baking at high temperature. A double-coating procedure was applied, involving the encapsulation of bacterial cells in calcium alginate, which was further coated with chitosan. The encapsulation efficiency (EE) did not show significant difference between alginate and alginate-chitosan (97.97 and 96.71%, respectively). The higher number of <i>L. paracasei</i> bacteria was preserved in double-coated microbeads, with survivability rates of 89.51% and 96.90% in wet and dried microbeads, respectively. Encapsulated bacteria demonstrated effective fermentation ability, while double gel-coated cells exhibited slower acidification during sourdough fermentation, maintaining higher efficiency in the second fermentation cycle. The addition of freeze-dried, alginate-based gel-encapsulated bacteria (2-4%, <i>w</i>/<i>w</i> flour) significantly (<i>p</i> < 0.05) improved bread quality and extended its shelf life. A double-layer coating (alginate-chitosan) can be introduced as an innovative strategy for regulating the release of lactic acid bacteria and optimizing fermentation processes. Powdered alginate or alginate-chitosan gel-based <i>L. paracasei</i> microcapsules, at appropriate concentrations, can be used in the production of baked goods with acceptable quality and sensory properties, achieving a lactic acid bacteria count of approximately 10<sup>6</sup> CFU/g in the crumb, thereby meeting the standard criteria for probiotic bakery products.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10100641\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100641","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是评估包裹在藻酸盐凝胶基质中的耐酸性副酸乳杆菌在反复酸面团发酵过程中的效率,以及它们在储存和高温烘烤过程中的保存情况。该研究采用了双重包覆法,即在海藻酸钙中包覆细菌细胞,然后在海藻酸钙上再包覆一层壳聚糖。海藻酸盐和海藻酸盐-壳聚糖的封装效率(EE)没有明显差异(分别为 97.97% 和 96.71%)。双涂层微珠中保存的副卡氏乳杆菌数量较多,湿微珠和干微珠的存活率分别为 89.51% 和 96.90%。封装细菌表现出有效的发酵能力,而双凝胶涂层细胞在酸面团发酵过程中酸化速度较慢,在第二个发酵周期中保持较高的效率。添加冷冻干燥的海藻酸盐凝胶包被菌(2-4%,w/w 面粉)可显著提高面包质量(p < 0.05),并延长其保质期。双层涂层(藻酸盐-壳聚糖)可作为一种创新策略,用于调节乳酸菌的释放和优化发酵过程。以海藻酸盐粉末或海藻酸盐-壳聚糖凝胶为基础的 L. paracasei 微胶囊,在适当浓度下,可用于生产具有可接受质量和感官特性的烘焙食品,使面包屑中的乳酸菌数量达到约 106 CFU/g,从而符合益生菌烘焙产品的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Calcium Alginate-Based Gels for Encapsulation of Lacticaseibacillus paracasei to Enhance Stability in Functional Breadmaking.

This study focuses on evaluating the efficiency of acid-tolerant Lacticaseibacillus paracasei bacteria encapsulated in an alginate-based gel matrix during repeated sourdough fermentation cycles, as well as their preservation during storage and throughout baking at high temperature. A double-coating procedure was applied, involving the encapsulation of bacterial cells in calcium alginate, which was further coated with chitosan. The encapsulation efficiency (EE) did not show significant difference between alginate and alginate-chitosan (97.97 and 96.71%, respectively). The higher number of L. paracasei bacteria was preserved in double-coated microbeads, with survivability rates of 89.51% and 96.90% in wet and dried microbeads, respectively. Encapsulated bacteria demonstrated effective fermentation ability, while double gel-coated cells exhibited slower acidification during sourdough fermentation, maintaining higher efficiency in the second fermentation cycle. The addition of freeze-dried, alginate-based gel-encapsulated bacteria (2-4%, w/w flour) significantly (p < 0.05) improved bread quality and extended its shelf life. A double-layer coating (alginate-chitosan) can be introduced as an innovative strategy for regulating the release of lactic acid bacteria and optimizing fermentation processes. Powdered alginate or alginate-chitosan gel-based L. paracasei microcapsules, at appropriate concentrations, can be used in the production of baked goods with acceptable quality and sensory properties, achieving a lactic acid bacteria count of approximately 106 CFU/g in the crumb, thereby meeting the standard criteria for probiotic bakery products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
期刊最新文献
Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review. Process Mapping of the Sol-Gel Transition in Acid-Initiated Sodium Silicate Solutions. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Cross-Linked Polyimide Aerogels with Excellent Thermal and Mechanical Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1