基于水凝胶的血管化器官组织工程:腹部器官系统化综述。

IF 5 3区 化学 Q1 POLYMER SCIENCE Gels Pub Date : 2024-10-12 DOI:10.3390/gels10100653
Filippos F Karageorgos, Maria Alexiou, Georgios Tsoulfas, Aleck H Alexopoulos
{"title":"基于水凝胶的血管化器官组织工程:腹部器官系统化综述。","authors":"Filippos F Karageorgos, Maria Alexiou, Georgios Tsoulfas, Aleck H Alexopoulos","doi":"10.3390/gels10100653","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biomedical engineering, especially tissue engineering, is trying to provide an alternative solution to generate functional organs/tissues for use in various applications. These include beyond the final goal of transplantation, disease modeling and drug discovery as well. The aim of this study is to comprehensively review the existing literature on hydrogel-based vascularized organ (i.e., liver, pancreas, kidneys, intestine, stomach and spleen) tissue engineering of the abdominal organs.</p><p><strong>Methods: </strong>A comprehensive literature search was conducted on the Scopus database (latest search 1 September 2024). The research studies including hydrogel-based vascularized organ tissue engineering in the organs examined here were eligible for the review.</p><p><strong>Results: </strong>Herein, 18 studies were included. Specifically, 10 studies included the liver or hepatic tissue, 5 studies included the pancreas or pancreatic islet tissue, 3 studies included the kidney or renal tissue, 1 study included the intestine or intestinal or bowel tissue, 1 study included the stomach or gastric tissue, and 0 studies included spleen tissue.</p><p><strong>Conclusion: </strong>Hydrogels are biocompatible materials with ideal characteristics for use as scaffolds. Even though organ tissue engineering is a rapidly growing field, there are still many obstacles to overcome to create a fully functional and long-lasting organ.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507150/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrogel-Based Vascularized Organ Tissue Engineering: A Systematized Review on Abdominal Organs.\",\"authors\":\"Filippos F Karageorgos, Maria Alexiou, Georgios Tsoulfas, Aleck H Alexopoulos\",\"doi\":\"10.3390/gels10100653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Biomedical engineering, especially tissue engineering, is trying to provide an alternative solution to generate functional organs/tissues for use in various applications. These include beyond the final goal of transplantation, disease modeling and drug discovery as well. The aim of this study is to comprehensively review the existing literature on hydrogel-based vascularized organ (i.e., liver, pancreas, kidneys, intestine, stomach and spleen) tissue engineering of the abdominal organs.</p><p><strong>Methods: </strong>A comprehensive literature search was conducted on the Scopus database (latest search 1 September 2024). The research studies including hydrogel-based vascularized organ tissue engineering in the organs examined here were eligible for the review.</p><p><strong>Results: </strong>Herein, 18 studies were included. Specifically, 10 studies included the liver or hepatic tissue, 5 studies included the pancreas or pancreatic islet tissue, 3 studies included the kidney or renal tissue, 1 study included the intestine or intestinal or bowel tissue, 1 study included the stomach or gastric tissue, and 0 studies included spleen tissue.</p><p><strong>Conclusion: </strong>Hydrogels are biocompatible materials with ideal characteristics for use as scaffolds. Even though organ tissue engineering is a rapidly growing field, there are still many obstacles to overcome to create a fully functional and long-lasting organ.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10100653\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100653","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景:生物医学工程,尤其是组织工程,正试图提供一种替代解决方案,生成功能性器官/组织,用于各种应用。这些应用不仅包括移植、疾病建模和药物发现等最终目标。本研究旨在全面综述有关基于水凝胶的腹部器官(即肝脏、胰腺、肾脏、肠道、胃和脾脏)血管化组织工程的现有文献:在 Scopus 数据库中进行了全面的文献检索(最新检索日期为 2024 年 9 月 1 日)。结果:共纳入 18 项研究:结果:共纳入 18 项研究。具体而言,10 项研究包括肝脏或肝组织,5 项研究包括胰腺或胰岛组织,3 项研究包括肾脏或肾组织,1 项研究包括肠道或肠道组织,1 项研究包括胃或胃组织,0 项研究包括脾脏组织:结论:水凝胶是一种生物相容性材料,具有用作支架的理想特性。尽管器官组织工程是一个快速发展的领域,但要制造出功能齐全、使用寿命长的器官,仍有许多障碍需要克服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogel-Based Vascularized Organ Tissue Engineering: A Systematized Review on Abdominal Organs.

Background: Biomedical engineering, especially tissue engineering, is trying to provide an alternative solution to generate functional organs/tissues for use in various applications. These include beyond the final goal of transplantation, disease modeling and drug discovery as well. The aim of this study is to comprehensively review the existing literature on hydrogel-based vascularized organ (i.e., liver, pancreas, kidneys, intestine, stomach and spleen) tissue engineering of the abdominal organs.

Methods: A comprehensive literature search was conducted on the Scopus database (latest search 1 September 2024). The research studies including hydrogel-based vascularized organ tissue engineering in the organs examined here were eligible for the review.

Results: Herein, 18 studies were included. Specifically, 10 studies included the liver or hepatic tissue, 5 studies included the pancreas or pancreatic islet tissue, 3 studies included the kidney or renal tissue, 1 study included the intestine or intestinal or bowel tissue, 1 study included the stomach or gastric tissue, and 0 studies included spleen tissue.

Conclusion: Hydrogels are biocompatible materials with ideal characteristics for use as scaffolds. Even though organ tissue engineering is a rapidly growing field, there are still many obstacles to overcome to create a fully functional and long-lasting organ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
期刊最新文献
Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review. Process Mapping of the Sol-Gel Transition in Acid-Initiated Sodium Silicate Solutions. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Cross-Linked Polyimide Aerogels with Excellent Thermal and Mechanical Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1