Ricardo S Moura, João Pedro R Afonso, Diego A C P G Mello, Renata Kelly Palma, Iransé Oliveira-Silva, Rodrigo F Oliveira, Deise A A P Oliveira, Dante B Santos, Carlos Hassel M Silva, Orlando A Guedes, Giuseppe Insalaco, Luís V F Oliveira
{"title":"与光动力疗法相关的水凝胶对金黄色葡萄球菌有抗菌作用:系统综述。","authors":"Ricardo S Moura, João Pedro R Afonso, Diego A C P G Mello, Renata Kelly Palma, Iransé Oliveira-Silva, Rodrigo F Oliveira, Deise A A P Oliveira, Dante B Santos, Carlos Hassel M Silva, Orlando A Guedes, Giuseppe Insalaco, Luís V F Oliveira","doi":"10.3390/gels10100635","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>) is a Gram-positive bacterium that causes infections ranging from mild superficial cases to more severe, potentially fatal conditions. Many photosensitisers used in photodynamic therapy are more effective against superficial infections due to limitations in treating deeper tissue infections. Recently, attention to this bacterium has increased due to the emergence of multidrug-resistant strains, which complicate antibiotic treatment. As a result, alternative therapies, such as antimicrobial photodynamic therapy (PDT), have emerged as promising options for treating non-systemic infections. PDT combines a photosensitiser (PS) with light and oxygen to generate free radicals that destroy bacterial structures. This systematic review evaluates the effectiveness of PDT delivered via different types of hydrogels in treating wounds, burns, and contamination by <i>S. aureus</i>. Following PRISMA 2020 guidelines, a bibliographic search was conducted in PubMed, Web of Science, and Scopus databases, including articles published in English between 2013 and 2024. Seven relevant studies were included, demonstrating evidence of PDT use against <i>S. aureus</i> in in vitro and in vivo studies. We concluded that PDT can effectively complement antimicrobial therapy in the healing of wounds and burns. The effectiveness of this technique depends on the PS used, the type of hydrogel, and the lesion location. However, further in vivo studies are needed to confirm the safety and efficacy of PDT delivered via hydrogels.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrogels Associated with Photodynamic Therapy Have Antimicrobial Effect against <i>Staphylococcus aureus</i>: A Systematic Review.\",\"authors\":\"Ricardo S Moura, João Pedro R Afonso, Diego A C P G Mello, Renata Kelly Palma, Iransé Oliveira-Silva, Rodrigo F Oliveira, Deise A A P Oliveira, Dante B Santos, Carlos Hassel M Silva, Orlando A Guedes, Giuseppe Insalaco, Luís V F Oliveira\",\"doi\":\"10.3390/gels10100635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>) is a Gram-positive bacterium that causes infections ranging from mild superficial cases to more severe, potentially fatal conditions. Many photosensitisers used in photodynamic therapy are more effective against superficial infections due to limitations in treating deeper tissue infections. Recently, attention to this bacterium has increased due to the emergence of multidrug-resistant strains, which complicate antibiotic treatment. As a result, alternative therapies, such as antimicrobial photodynamic therapy (PDT), have emerged as promising options for treating non-systemic infections. PDT combines a photosensitiser (PS) with light and oxygen to generate free radicals that destroy bacterial structures. This systematic review evaluates the effectiveness of PDT delivered via different types of hydrogels in treating wounds, burns, and contamination by <i>S. aureus</i>. Following PRISMA 2020 guidelines, a bibliographic search was conducted in PubMed, Web of Science, and Scopus databases, including articles published in English between 2013 and 2024. Seven relevant studies were included, demonstrating evidence of PDT use against <i>S. aureus</i> in in vitro and in vivo studies. We concluded that PDT can effectively complement antimicrobial therapy in the healing of wounds and burns. The effectiveness of this technique depends on the PS used, the type of hydrogel, and the lesion location. However, further in vivo studies are needed to confirm the safety and efficacy of PDT delivered via hydrogels.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10100635\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100635","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Hydrogels Associated with Photodynamic Therapy Have Antimicrobial Effect against Staphylococcus aureus: A Systematic Review.
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that causes infections ranging from mild superficial cases to more severe, potentially fatal conditions. Many photosensitisers used in photodynamic therapy are more effective against superficial infections due to limitations in treating deeper tissue infections. Recently, attention to this bacterium has increased due to the emergence of multidrug-resistant strains, which complicate antibiotic treatment. As a result, alternative therapies, such as antimicrobial photodynamic therapy (PDT), have emerged as promising options for treating non-systemic infections. PDT combines a photosensitiser (PS) with light and oxygen to generate free radicals that destroy bacterial structures. This systematic review evaluates the effectiveness of PDT delivered via different types of hydrogels in treating wounds, burns, and contamination by S. aureus. Following PRISMA 2020 guidelines, a bibliographic search was conducted in PubMed, Web of Science, and Scopus databases, including articles published in English between 2013 and 2024. Seven relevant studies were included, demonstrating evidence of PDT use against S. aureus in in vitro and in vivo studies. We concluded that PDT can effectively complement antimicrobial therapy in the healing of wounds and burns. The effectiveness of this technique depends on the PS used, the type of hydrogel, and the lesion location. However, further in vivo studies are needed to confirm the safety and efficacy of PDT delivered via hydrogels.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.