在不同植物生长调节剂的作用下,某些外植体诱导番茄茄属植物胼胝体和小植株再生的潜力

Biotechnologia Pub Date : 2024-09-30 eCollection Date: 2024-01-01 DOI:10.5114/bta.2024.141803
Anjana Kumari, Avinash K Nagpal, Jatinder K Katnoria
{"title":"在不同植物生长调节剂的作用下,某些外植体诱导番茄茄属植物胼胝体和小植株再生的潜力","authors":"Anjana Kumari, Avinash K Nagpal, Jatinder K Katnoria","doi":"10.5114/bta.2024.141803","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth regulators (PGRs) control signaling networks and developmental processes involved in plant responses to various biotic and abiotic stresses, making it crucial to study PGRs <i>in vitro</i>. The protocol for micropropagation of <i>Solanum lycopersicum</i> L., following callus induction and regeneration through explants such as internodal segments, leaves, and nodal segments, was established during the present study. Explants were inoculated on Murashige and Skoog (MS) medium supplemented with different plant growth regulators like BA (6-benzylaminopurine), 2,4-D (2,4-dichlorophenoxyacetic acid), BA + 2,4-D, IAA (Indoleacetic acid), IBA (Indolebutyric acid), and NAA (Naphthaleneacetic acid). It was observed that among all explants, the nodal segment showed maximum callus induction (83.33%) and multiplication (86.67%) at 0.25 mg/l of 2,4-D; the highest shoot number (3.33) at 0.5 mg/l of IAA + 0.5 mg/l of BA; the greatest shoot length (7.57 cm) at 0.75 mg/l of BA; root induction (80.95%), root number (21.88), and root length (10.62 cm) at 1 mg/l of IAA. Additionally, the maximum fresh weight (2.448 g) was observed at 0.5 mg/l of BA, while the highest dry weight (0.172 g) and dry matter content (14.25%) were noted at 1 mg/l of BA + 1 mg/l of 2,4-D for the internodal segment. Results of the present study revealed that among different explants, the best response was given by nodal segments, followed by internodal segments. Among the different PGRs, 2,4-D resulted in the highest callus induction and multiplication percentage.</p>","PeriodicalId":94371,"journal":{"name":"Biotechnologia","volume":"105 3","pages":"227-247"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential of some explants for callus induction and plantlet regeneration in <i>Solanum lycopersicum</i> L. under treatment of different plant growth regulators.\",\"authors\":\"Anjana Kumari, Avinash K Nagpal, Jatinder K Katnoria\",\"doi\":\"10.5114/bta.2024.141803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant growth regulators (PGRs) control signaling networks and developmental processes involved in plant responses to various biotic and abiotic stresses, making it crucial to study PGRs <i>in vitro</i>. The protocol for micropropagation of <i>Solanum lycopersicum</i> L., following callus induction and regeneration through explants such as internodal segments, leaves, and nodal segments, was established during the present study. Explants were inoculated on Murashige and Skoog (MS) medium supplemented with different plant growth regulators like BA (6-benzylaminopurine), 2,4-D (2,4-dichlorophenoxyacetic acid), BA + 2,4-D, IAA (Indoleacetic acid), IBA (Indolebutyric acid), and NAA (Naphthaleneacetic acid). It was observed that among all explants, the nodal segment showed maximum callus induction (83.33%) and multiplication (86.67%) at 0.25 mg/l of 2,4-D; the highest shoot number (3.33) at 0.5 mg/l of IAA + 0.5 mg/l of BA; the greatest shoot length (7.57 cm) at 0.75 mg/l of BA; root induction (80.95%), root number (21.88), and root length (10.62 cm) at 1 mg/l of IAA. Additionally, the maximum fresh weight (2.448 g) was observed at 0.5 mg/l of BA, while the highest dry weight (0.172 g) and dry matter content (14.25%) were noted at 1 mg/l of BA + 1 mg/l of 2,4-D for the internodal segment. Results of the present study revealed that among different explants, the best response was given by nodal segments, followed by internodal segments. Among the different PGRs, 2,4-D resulted in the highest callus induction and multiplication percentage.</p>\",\"PeriodicalId\":94371,\"journal\":{\"name\":\"Biotechnologia\",\"volume\":\"105 3\",\"pages\":\"227-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5114/bta.2024.141803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/bta.2024.141803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物生长调节剂(PGRs)控制植物对各种生物和非生物胁迫的信号网络和发育过程,因此离体研究植物生长调节剂至关重要。本研究建立了茄果类植物(Solanum lycopersicum L.)的微繁殖方案,即通过节间段、叶片和节段等外植体进行胼胝体诱导和再生。将外植体接种到添加了不同植物生长调节剂(如 BA(6-苄基氨基嘌呤)、2,4-D(2,4-二氯苯氧乙酸)、BA + 2,4-D、IAA(吲哚乙酸)、IBA(吲哚丁酸)和 NAA(萘乙酸))的 Murashige and Skoog(MS)培养基上。据观察,在所有外植体中,节段在 2,4-D 浓度为 0.25 毫克/升时,胼胝体诱导率(83.33%)和繁殖率(86.67%)最高;在 IAA 浓度为 0.5 毫克/升 + BA 浓度为 0.5 毫克/升时,芽数(3.33)最高;在 BA 浓度为 0.75 毫克/升时,芽长(7.57 厘米)最大;在 IAA 浓度为 1 毫克/升时,根诱导率(80.95%)、根数(21.88)和根长(10.62 厘米)最大。此外,在使用 0.5 毫克/升 BA 时,鲜重(2.448 克)最大,而在使用 1 毫克/升 BA + 1 毫克/升 2,4-D 时,节间段的干重(0.172 克)和干物质含量(14.25%)最高。本研究结果表明,在不同的外植体中,节段的反应最好,其次是节间段。在不同的植物生长调节剂中,2,4-D 的胼胝体诱导率和繁殖率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential of some explants for callus induction and plantlet regeneration in Solanum lycopersicum L. under treatment of different plant growth regulators.

Plant growth regulators (PGRs) control signaling networks and developmental processes involved in plant responses to various biotic and abiotic stresses, making it crucial to study PGRs in vitro. The protocol for micropropagation of Solanum lycopersicum L., following callus induction and regeneration through explants such as internodal segments, leaves, and nodal segments, was established during the present study. Explants were inoculated on Murashige and Skoog (MS) medium supplemented with different plant growth regulators like BA (6-benzylaminopurine), 2,4-D (2,4-dichlorophenoxyacetic acid), BA + 2,4-D, IAA (Indoleacetic acid), IBA (Indolebutyric acid), and NAA (Naphthaleneacetic acid). It was observed that among all explants, the nodal segment showed maximum callus induction (83.33%) and multiplication (86.67%) at 0.25 mg/l of 2,4-D; the highest shoot number (3.33) at 0.5 mg/l of IAA + 0.5 mg/l of BA; the greatest shoot length (7.57 cm) at 0.75 mg/l of BA; root induction (80.95%), root number (21.88), and root length (10.62 cm) at 1 mg/l of IAA. Additionally, the maximum fresh weight (2.448 g) was observed at 0.5 mg/l of BA, while the highest dry weight (0.172 g) and dry matter content (14.25%) were noted at 1 mg/l of BA + 1 mg/l of 2,4-D for the internodal segment. Results of the present study revealed that among different explants, the best response was given by nodal segments, followed by internodal segments. Among the different PGRs, 2,4-D resulted in the highest callus induction and multiplication percentage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A review on xylanase sources, classification, mode of action, fermentation processes, and applications as a promising biocatalyst. Exploring the antioxidant, antidiabetic, and antibacterial potential of postbiotic compounds derived from Lactiplantibacillus plantarum O7S1. Induction of an immune response by a nonreplicating adenoviruses-based formulation versus a commercial pseudo-SARS-CoV-2 vaccine. Investigation of CNS depressant and muscle relaxant effects of the ethnomedicinal plant Macropanax dispermus on Swiss Albino mice and its effect against oxidative stress. Investigation of the new substitution glycine to alanine within the Kringle-2 domain of reteplase: a molecular dynamics study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1