{"title":"论银河系的质量集合史:来自其恒星晕的线索","authors":"Danny Horta, Ricardo P. Schiavon","doi":"10.1007/s10509-024-04370-y","DOIUrl":null,"url":null,"abstract":"<div><p>Stellar halos of galaxies retain crucial clues to their mass assembly history. It is in these galactic components that the remains of cannibalised galactic building blocks are deposited. For the case of the Milky Way, the opportunity to analyse the stellar halo’s structure on a star-by-star basis in a multi-faceted approach provides a basis from which to infer its past and assembly history in unrivalled detail. Moreover, the insights that can be gained about the formation of the Galaxy not only help constrain the evolution of our Milky Way, but may also help place constraints on the formation of other disc galaxies in the Universe. This paper includes a summary of work undertaken during a PhD thesis aiming to make progress toward answering the most fundamental question in the field of Galactic archaeology: <i>“How did the Milky Way form?”</i> Through the effort to answer this question, we summarise new insights into aspects of the history of assembly and evolution of our Galaxy and measurements of the structure of various of its Galactic components.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mass assembly history of the Milky Way: clues from its stellar halo\",\"authors\":\"Danny Horta, Ricardo P. Schiavon\",\"doi\":\"10.1007/s10509-024-04370-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stellar halos of galaxies retain crucial clues to their mass assembly history. It is in these galactic components that the remains of cannibalised galactic building blocks are deposited. For the case of the Milky Way, the opportunity to analyse the stellar halo’s structure on a star-by-star basis in a multi-faceted approach provides a basis from which to infer its past and assembly history in unrivalled detail. Moreover, the insights that can be gained about the formation of the Galaxy not only help constrain the evolution of our Milky Way, but may also help place constraints on the formation of other disc galaxies in the Universe. This paper includes a summary of work undertaken during a PhD thesis aiming to make progress toward answering the most fundamental question in the field of Galactic archaeology: <i>“How did the Milky Way form?”</i> Through the effort to answer this question, we summarise new insights into aspects of the history of assembly and evolution of our Galaxy and measurements of the structure of various of its Galactic components.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 10\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04370-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04370-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the mass assembly history of the Milky Way: clues from its stellar halo
Stellar halos of galaxies retain crucial clues to their mass assembly history. It is in these galactic components that the remains of cannibalised galactic building blocks are deposited. For the case of the Milky Way, the opportunity to analyse the stellar halo’s structure on a star-by-star basis in a multi-faceted approach provides a basis from which to infer its past and assembly history in unrivalled detail. Moreover, the insights that can be gained about the formation of the Galaxy not only help constrain the evolution of our Milky Way, but may also help place constraints on the formation of other disc galaxies in the Universe. This paper includes a summary of work undertaken during a PhD thesis aiming to make progress toward answering the most fundamental question in the field of Galactic archaeology: “How did the Milky Way form?” Through the effort to answer this question, we summarise new insights into aspects of the history of assembly and evolution of our Galaxy and measurements of the structure of various of its Galactic components.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.