Mei-Ping Zhu, Bing-Yi Zhang, Ting Lian, Yuan-Jia Tan, Lin-Lin Chang, Pan Xu, Jin-Yi Zhang, Yan-Huan Du, Zhen-Yu Xiong, Qiong Du, Shi-Zhong Zhang
{"title":"线粒体 TRPV3 参与了压力过载诱导的大鼠心肌肥大。","authors":"Mei-Ping Zhu, Bing-Yi Zhang, Ting Lian, Yuan-Jia Tan, Lin-Lin Chang, Pan Xu, Jin-Yi Zhang, Yan-Huan Du, Zhen-Yu Xiong, Qiong Du, Shi-Zhong Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria play an important role in pressure overload-induced cardiac hypertrophy. The present study aimed to investigate the role of mitochondrial transient receptor potential vanilloid 3 (TRPV3) in myocardial hypertrophy. A 0.7 mm diameter U-shaped silver clip was used to clamp the abdominal aorta of Sprague Dawley (SD) rats and establish an animal model of abdominal aortic constriction (AAC). Rat H9C2 myocardial cells were treated with angiotensin II (Ang II) to establish a hypertrophic myocardial cell model, and TRPV3 expression was knocked down using TRPV3 small interfering RNA (siRNA). JC-1 probe was used to detect mitochondrial membrane potential (MMP). DHE probe was used to detect ROS generation. Enzyme activities of mitochondrial respiratory chain complex I and III and ATP production were detected by assay kits. Immunofluorescence staining was used to detect TRPV3 expression in H9C2 cells. Western blot was used to detect the protein expression levels of β-myosin heavy chain (β-MHC), mitochondrial TRPV3 and mitochondrial NOX4. The results showed that, in the rat AAC model heart tissue and H9C2 cells treated with Ang II, the protein expression levels of β-MHC, mitochondrial TRPV3 and mitochondrial NOX4 were up-regulated, MMP was decreased, ROS generation was increased, mitochondrial respiratory chain complex I and III enzyme activities were decreased, and ATP production was reduced. After knocking down mitochondrial TRPV3 in H9C2 cells, the protein expression levels of β-MHC and mitochondrial NOX4 were down-regulated, MMP was increased, ROS generation was decreased, mitochondrial respiratory chain complex I and III enzyme activities were increased, and ATP production was increased. These results suggest that mitochondrial TRPV3 in cardiomyocytes exacerbates mitochondrial dysfunction by up-regulating NOX4, thereby participating in the process of pressure overload-induced myocardial hypertrophy.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involvement of mitochondrial TRPV3 in cardiac hypertrophy induced by pressure overload in rats.\",\"authors\":\"Mei-Ping Zhu, Bing-Yi Zhang, Ting Lian, Yuan-Jia Tan, Lin-Lin Chang, Pan Xu, Jin-Yi Zhang, Yan-Huan Du, Zhen-Yu Xiong, Qiong Du, Shi-Zhong Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria play an important role in pressure overload-induced cardiac hypertrophy. The present study aimed to investigate the role of mitochondrial transient receptor potential vanilloid 3 (TRPV3) in myocardial hypertrophy. A 0.7 mm diameter U-shaped silver clip was used to clamp the abdominal aorta of Sprague Dawley (SD) rats and establish an animal model of abdominal aortic constriction (AAC). Rat H9C2 myocardial cells were treated with angiotensin II (Ang II) to establish a hypertrophic myocardial cell model, and TRPV3 expression was knocked down using TRPV3 small interfering RNA (siRNA). JC-1 probe was used to detect mitochondrial membrane potential (MMP). DHE probe was used to detect ROS generation. Enzyme activities of mitochondrial respiratory chain complex I and III and ATP production were detected by assay kits. Immunofluorescence staining was used to detect TRPV3 expression in H9C2 cells. Western blot was used to detect the protein expression levels of β-myosin heavy chain (β-MHC), mitochondrial TRPV3 and mitochondrial NOX4. The results showed that, in the rat AAC model heart tissue and H9C2 cells treated with Ang II, the protein expression levels of β-MHC, mitochondrial TRPV3 and mitochondrial NOX4 were up-regulated, MMP was decreased, ROS generation was increased, mitochondrial respiratory chain complex I and III enzyme activities were decreased, and ATP production was reduced. After knocking down mitochondrial TRPV3 in H9C2 cells, the protein expression levels of β-MHC and mitochondrial NOX4 were down-regulated, MMP was increased, ROS generation was decreased, mitochondrial respiratory chain complex I and III enzyme activities were increased, and ATP production was increased. These results suggest that mitochondrial TRPV3 in cardiomyocytes exacerbates mitochondrial dysfunction by up-regulating NOX4, thereby participating in the process of pressure overload-induced myocardial hypertrophy.</p>\",\"PeriodicalId\":7134,\"journal\":{\"name\":\"生理学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
线粒体在压力过载诱导的心肌肥厚中发挥着重要作用。本研究旨在探讨线粒体瞬时受体电位香草素 3(TRPV3)在心肌肥厚中的作用。用直径为 0.7 毫米的 U 形银夹夹住 Sprague Dawley(SD)大鼠的腹主动脉,建立腹主动脉缩窄(AAC)动物模型。用血管紧张素 II(Ang II)处理大鼠 H9C2 心肌细胞以建立肥厚型心肌细胞模型,并用 TRPV3 小干扰 RNA(siRNA)敲除 TRPV3 的表达。JC-1 探针用于检测线粒体膜电位(MMP)。DHE 探针用于检测 ROS 的产生。线粒体呼吸链复合物 I 和 III 的酶活性以及 ATP 的产生均由检测试剂盒检测。免疫荧光染色用于检测 TRPV3 在 H9C2 细胞中的表达。用 Western 印迹法检测了 β-肌球蛋白重链(β-MHC)、线粒体 TRPV3 和线粒体 NOX4 的蛋白表达水平。结果表明,用 Ang II 处理大鼠 AAC 模型心脏组织和 H9C2 细胞后,β-MHC、线粒体 TRPV3 和线粒体 NOX4 蛋白表达水平上调,MMP 水平下降,ROS 生成增加,线粒体呼吸链复合物 I 和 III 酶活性下降,ATP 生成减少。在 H9C2 细胞中敲除线粒体 TRPV3 后,β-MHC 和线粒体 NOX4 蛋白表达水平下调,MMP 增加,ROS 生成减少,线粒体呼吸链复合物 I 和 III 酶活性增加,ATP 生成增加。这些结果表明,心肌细胞线粒体 TRPV3 通过上调 NOX4 加剧线粒体功能障碍,从而参与压力过载诱发心肌肥厚的过程。
Involvement of mitochondrial TRPV3 in cardiac hypertrophy induced by pressure overload in rats.
Mitochondria play an important role in pressure overload-induced cardiac hypertrophy. The present study aimed to investigate the role of mitochondrial transient receptor potential vanilloid 3 (TRPV3) in myocardial hypertrophy. A 0.7 mm diameter U-shaped silver clip was used to clamp the abdominal aorta of Sprague Dawley (SD) rats and establish an animal model of abdominal aortic constriction (AAC). Rat H9C2 myocardial cells were treated with angiotensin II (Ang II) to establish a hypertrophic myocardial cell model, and TRPV3 expression was knocked down using TRPV3 small interfering RNA (siRNA). JC-1 probe was used to detect mitochondrial membrane potential (MMP). DHE probe was used to detect ROS generation. Enzyme activities of mitochondrial respiratory chain complex I and III and ATP production were detected by assay kits. Immunofluorescence staining was used to detect TRPV3 expression in H9C2 cells. Western blot was used to detect the protein expression levels of β-myosin heavy chain (β-MHC), mitochondrial TRPV3 and mitochondrial NOX4. The results showed that, in the rat AAC model heart tissue and H9C2 cells treated with Ang II, the protein expression levels of β-MHC, mitochondrial TRPV3 and mitochondrial NOX4 were up-regulated, MMP was decreased, ROS generation was increased, mitochondrial respiratory chain complex I and III enzyme activities were decreased, and ATP production was reduced. After knocking down mitochondrial TRPV3 in H9C2 cells, the protein expression levels of β-MHC and mitochondrial NOX4 were down-regulated, MMP was increased, ROS generation was decreased, mitochondrial respiratory chain complex I and III enzyme activities were increased, and ATP production was increased. These results suggest that mitochondrial TRPV3 in cardiomyocytes exacerbates mitochondrial dysfunction by up-regulating NOX4, thereby participating in the process of pressure overload-induced myocardial hypertrophy.
期刊介绍:
Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.