镍钴锰酸锂超晶格的可调带隙及其光学特性研究

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-10-21 DOI:10.1016/j.micrna.2024.207999
Yongbo Li , Xinping Guo , Wenbo Xiao , Huaming Wu , Bin Liu
{"title":"镍钴锰酸锂超晶格的可调带隙及其光学特性研究","authors":"Yongbo Li ,&nbsp;Xinping Guo ,&nbsp;Wenbo Xiao ,&nbsp;Huaming Wu ,&nbsp;Bin Liu","doi":"10.1016/j.micrna.2024.207999","DOIUrl":null,"url":null,"abstract":"<div><div>The property changes between APbBr<sub>3</sub> (A = Li, Na) and LiPbBr<sub>3</sub>/NaPbBr<sub>3</sub> superlattice (LiNaPb<sub>2</sub>Br<sub>6</sub>), as well as the electronic structure and optical properties of LiNaPb<sub>2</sub>Br<sub>6</sub> under various pressures, have been investigated using the GGA-PBE method based on first-principles. The research shows that the band gap (E<sub>g</sub>) value of LiNaPb<sub>2</sub>Br<sub>6</sub> is 1.674 eV at 0 GPa, which is between that of LiPbBr<sub>3</sub> and NaPbBr<sub>3</sub>. Meanwhile, the results indicate that the E<sub>g</sub> of LiNaPb<sub>2</sub>Br<sub>6</sub> gradually decreases with the increase in pressure, reaching 0.080 eV at 7 GPa, and its valence band top crosses the Fermi level at 8 GPa. Therefore, by combining the construction of superlattices with the application of pressure, the E<sub>g</sub> of LiNaPb<sub>2</sub>Br<sub>6</sub> can be continuously regulated in the range of 0–1.674 eV. Since the optical properties of a material primarily depend on its band structure, the optical properties of LiNaPb<sub>2</sub>Br<sub>6</sub> can be widely adjusted by continuously tuning the E<sub>g</sub> of this superlattice. The calculated results demonstrate that the optical properties of LiNaPb<sub>2</sub>Br<sub>6</sub> were optimized in comparison to APbBr<sub>3</sub> (A = Li, Na). In addition, the increase in pressure improves the absorption capability of LiNaPb<sub>2</sub>Br<sub>6</sub> in both the visible and ultraviolet regions, thereby expanding the potential applications of LiNaPb<sub>2</sub>Br<sub>6</sub> in the optical field.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 207999"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the tunable band gap of LiNaPb2Br6 superlattice and its optical properties\",\"authors\":\"Yongbo Li ,&nbsp;Xinping Guo ,&nbsp;Wenbo Xiao ,&nbsp;Huaming Wu ,&nbsp;Bin Liu\",\"doi\":\"10.1016/j.micrna.2024.207999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The property changes between APbBr<sub>3</sub> (A = Li, Na) and LiPbBr<sub>3</sub>/NaPbBr<sub>3</sub> superlattice (LiNaPb<sub>2</sub>Br<sub>6</sub>), as well as the electronic structure and optical properties of LiNaPb<sub>2</sub>Br<sub>6</sub> under various pressures, have been investigated using the GGA-PBE method based on first-principles. The research shows that the band gap (E<sub>g</sub>) value of LiNaPb<sub>2</sub>Br<sub>6</sub> is 1.674 eV at 0 GPa, which is between that of LiPbBr<sub>3</sub> and NaPbBr<sub>3</sub>. Meanwhile, the results indicate that the E<sub>g</sub> of LiNaPb<sub>2</sub>Br<sub>6</sub> gradually decreases with the increase in pressure, reaching 0.080 eV at 7 GPa, and its valence band top crosses the Fermi level at 8 GPa. Therefore, by combining the construction of superlattices with the application of pressure, the E<sub>g</sub> of LiNaPb<sub>2</sub>Br<sub>6</sub> can be continuously regulated in the range of 0–1.674 eV. Since the optical properties of a material primarily depend on its band structure, the optical properties of LiNaPb<sub>2</sub>Br<sub>6</sub> can be widely adjusted by continuously tuning the E<sub>g</sub> of this superlattice. The calculated results demonstrate that the optical properties of LiNaPb<sub>2</sub>Br<sub>6</sub> were optimized in comparison to APbBr<sub>3</sub> (A = Li, Na). In addition, the increase in pressure improves the absorption capability of LiNaPb<sub>2</sub>Br<sub>6</sub> in both the visible and ultraviolet regions, thereby expanding the potential applications of LiNaPb<sub>2</sub>Br<sub>6</sub> in the optical field.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"196 \",\"pages\":\"Article 207999\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324002486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

基于第一性原理,采用 GGA-PBE 方法研究了 APbBr3(A = Li、Na)与 LiPbBr3/NaPbBr3 超晶格(LiNaPb2Br6)之间的性质变化,以及 LiNaPb2Br6 在不同压力下的电子结构和光学性质。研究表明,LiNaPb2Br6 在 0 GPa 时的带隙(Eg)值为 1.674 eV,介于 LiPbBr3 和 NaPbBr3 之间。同时,研究结果表明,随着压力的增加,LiNaPb2Br6 的 Eg 值逐渐减小,在 7 GPa 时达到 0.080 eV,在 8 GPa 时其价带顶越过费米级。因此,通过构建超晶格与施加压力相结合,可以在 0-1.674 eV 的范围内连续调节 LiNaPb2Br6 的 Eg。由于材料的光学特性主要取决于其能带结构,因此通过连续调节该超晶格的 Eg,可以广泛地调节 LiNaPb2Br6 的光学特性。计算结果表明,与 APbBr3(A = Li、Na)相比,LiNaPb2Br6 的光学特性得到了优化。此外,压力的增加提高了 LiNaPb2Br6 在可见光和紫外光区域的吸收能力,从而拓展了 LiNaPb2Br6 在光学领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the tunable band gap of LiNaPb2Br6 superlattice and its optical properties
The property changes between APbBr3 (A = Li, Na) and LiPbBr3/NaPbBr3 superlattice (LiNaPb2Br6), as well as the electronic structure and optical properties of LiNaPb2Br6 under various pressures, have been investigated using the GGA-PBE method based on first-principles. The research shows that the band gap (Eg) value of LiNaPb2Br6 is 1.674 eV at 0 GPa, which is between that of LiPbBr3 and NaPbBr3. Meanwhile, the results indicate that the Eg of LiNaPb2Br6 gradually decreases with the increase in pressure, reaching 0.080 eV at 7 GPa, and its valence band top crosses the Fermi level at 8 GPa. Therefore, by combining the construction of superlattices with the application of pressure, the Eg of LiNaPb2Br6 can be continuously regulated in the range of 0–1.674 eV. Since the optical properties of a material primarily depend on its band structure, the optical properties of LiNaPb2Br6 can be widely adjusted by continuously tuning the Eg of this superlattice. The calculated results demonstrate that the optical properties of LiNaPb2Br6 were optimized in comparison to APbBr3 (A = Li, Na). In addition, the increase in pressure improves the absorption capability of LiNaPb2Br6 in both the visible and ultraviolet regions, thereby expanding the potential applications of LiNaPb2Br6 in the optical field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of Ion/Ioff and transconductance of germanium based dual metal gate hetero-dielectric TFET Editorial Board A 4H–SiC TMOS with triple trenches and high-K dielectric Silicon carbide MOSFETs: A critical review of applications, technological advancements, and future perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1