{"title":"壳面碾磨机的数字动态建模和拓扑优化设计","authors":"E. Ulular , Y. Altintas , A. Liljerehn","doi":"10.1016/j.cirpj.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents digital modeling of shell face mills in milling cylinder heads. The cutter's structural dynamics and its mode shapes are predicted using a Finite Element system. The geometries of the cutter body and inserts are imported from their Computer Aided Design (CAD) models. The insert edge is discretized into small segments to model its varying normal rake and inclination angles, which affect the cutting mechanics. The cutter is dynamically assembled with the target machine tool spindle using the receptance coupling method. A general dynamic cutting force model, which considers the varying edge geometry and inserts’ run-outs, is developed and used to predict cutting forces and chatter stability diagrams. The proposed model is experimentally verified to demonstrate the feasibility of the systematic application of physics-based digital design and analysis of tools for the mass machining of specific parts. The cutter body shape is optimized to increase the stiffness of the bending mode shape that caused chatter via topology optimization, which led to five-fold increase in the absolute stable depth of cut.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"55 ","pages":"Pages 308-321"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital dynamic modeling and topology optimized design of shell face mills\",\"authors\":\"E. Ulular , Y. Altintas , A. Liljerehn\",\"doi\":\"10.1016/j.cirpj.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents digital modeling of shell face mills in milling cylinder heads. The cutter's structural dynamics and its mode shapes are predicted using a Finite Element system. The geometries of the cutter body and inserts are imported from their Computer Aided Design (CAD) models. The insert edge is discretized into small segments to model its varying normal rake and inclination angles, which affect the cutting mechanics. The cutter is dynamically assembled with the target machine tool spindle using the receptance coupling method. A general dynamic cutting force model, which considers the varying edge geometry and inserts’ run-outs, is developed and used to predict cutting forces and chatter stability diagrams. The proposed model is experimentally verified to demonstrate the feasibility of the systematic application of physics-based digital design and analysis of tools for the mass machining of specific parts. The cutter body shape is optimized to increase the stiffness of the bending mode shape that caused chatter via topology optimization, which led to five-fold increase in the absolute stable depth of cut.</div></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"55 \",\"pages\":\"Pages 308-321\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001573\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001573","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Digital dynamic modeling and topology optimized design of shell face mills
This paper presents digital modeling of shell face mills in milling cylinder heads. The cutter's structural dynamics and its mode shapes are predicted using a Finite Element system. The geometries of the cutter body and inserts are imported from their Computer Aided Design (CAD) models. The insert edge is discretized into small segments to model its varying normal rake and inclination angles, which affect the cutting mechanics. The cutter is dynamically assembled with the target machine tool spindle using the receptance coupling method. A general dynamic cutting force model, which considers the varying edge geometry and inserts’ run-outs, is developed and used to predict cutting forces and chatter stability diagrams. The proposed model is experimentally verified to demonstrate the feasibility of the systematic application of physics-based digital design and analysis of tools for the mass machining of specific parts. The cutter body shape is optimized to increase the stiffness of the bending mode shape that caused chatter via topology optimization, which led to five-fold increase in the absolute stable depth of cut.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.