探索在 MIL-53(Al)框架内稳定的 Cu2O2 上甲烷氧化成甲醇的完整催化循环:DFT 和微动力学联合研究

Santhanamoorthi Nachimuthu, Chen-Wei Yeh, Chi-You Liu, Mao-Sheng Su, Jyh-Chiang Jiang
{"title":"探索在 MIL-53(Al)框架内稳定的 Cu2O2 上甲烷氧化成甲醇的完整催化循环:DFT 和微动力学联合研究","authors":"Santhanamoorthi Nachimuthu,&nbsp;Chen-Wei Yeh,&nbsp;Chi-You Liu,&nbsp;Mao-Sheng Su,&nbsp;Jyh-Chiang Jiang","doi":"10.1016/j.mtcata.2024.100070","DOIUrl":null,"url":null,"abstract":"<div><div>Although inspiration from copper-based natural enzymes has shown promise in improving catalyst design for methane-to-methanol (MTM) oxidation, high productivity, and selectivity under mild conditions remain a significant challenge. This study constructs the dinuclear copper (Cu<sub>2</sub>) species stabilized within the metal-organic framework (MOF), MIL-53(Al), containing Cu as efficient catalytic sites and explores the ability of different oxidants (O<sub>2</sub>, N<sub>2</sub>O, and H<sub>2</sub>O<sub>2</sub>) to oxidize Cu<sub>2</sub> into the dicopper-oxo (Cu<sub>2</sub>O<sub>2</sub>) species using density functional theory (DFT) calculations. Our results indicate the kinetic and thermodynamic favorability of Cu<sub>2</sub>O<sub>2</sub> species formation using O<sub>2</sub> as an oxidant within the MIL-53(Al) framework. Furthermore, the thermal stability of Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) has been verified via ab initio molecular dynamics (AIMD) calculations. The kinetics of the complete MTM oxidation cycle over Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) have been studied using both DFT and microkinetic simulation methods. The present study predicts that the C-H activation on the Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) has a low free energy barrier (0.77 eV) and that the high stability of CH<sub>3</sub> and its very low free energy barrier in the C-O coupling step favors the methanol formation over the formaldehyde. More importantly, Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) exhibits high methanol selectivity owing to the inhibition of CH<sub>3</sub> dehydrogenation and low methanol desorption energy (0.21 eV). Microkinetic simulations confirm the methanol production under relatively mild reaction conditions (200–280 K and 1 bar). This work provides insights into the feasibility of selective MTM oxidation over this family of MOF under mild conditions.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"7 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring complete catalytic cycle of methane oxidation to methanol on Cu2O2 stabilized within MIL-53(Al) framework: A combined DFT and microkinetic study\",\"authors\":\"Santhanamoorthi Nachimuthu,&nbsp;Chen-Wei Yeh,&nbsp;Chi-You Liu,&nbsp;Mao-Sheng Su,&nbsp;Jyh-Chiang Jiang\",\"doi\":\"10.1016/j.mtcata.2024.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although inspiration from copper-based natural enzymes has shown promise in improving catalyst design for methane-to-methanol (MTM) oxidation, high productivity, and selectivity under mild conditions remain a significant challenge. This study constructs the dinuclear copper (Cu<sub>2</sub>) species stabilized within the metal-organic framework (MOF), MIL-53(Al), containing Cu as efficient catalytic sites and explores the ability of different oxidants (O<sub>2</sub>, N<sub>2</sub>O, and H<sub>2</sub>O<sub>2</sub>) to oxidize Cu<sub>2</sub> into the dicopper-oxo (Cu<sub>2</sub>O<sub>2</sub>) species using density functional theory (DFT) calculations. Our results indicate the kinetic and thermodynamic favorability of Cu<sub>2</sub>O<sub>2</sub> species formation using O<sub>2</sub> as an oxidant within the MIL-53(Al) framework. Furthermore, the thermal stability of Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) has been verified via ab initio molecular dynamics (AIMD) calculations. The kinetics of the complete MTM oxidation cycle over Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) have been studied using both DFT and microkinetic simulation methods. The present study predicts that the C-H activation on the Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) has a low free energy barrier (0.77 eV) and that the high stability of CH<sub>3</sub> and its very low free energy barrier in the C-O coupling step favors the methanol formation over the formaldehyde. More importantly, Cu<sub>2</sub>O<sub>2</sub>/MIL-53(Al) exhibits high methanol selectivity owing to the inhibition of CH<sub>3</sub> dehydrogenation and low methanol desorption energy (0.21 eV). Microkinetic simulations confirm the methanol production under relatively mild reaction conditions (200–280 K and 1 bar). This work provides insights into the feasibility of selective MTM oxidation over this family of MOF under mild conditions.</div></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"7 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X24000322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管从铜基天然酶中获得的灵感有望改善甲烷转化为甲醇(MTM)氧化的催化剂设计,但在温和条件下的高生产率和选择性仍然是一项重大挑战。本研究构建了稳定在金属有机框架(MOF)MIL-53(Al)中的双核铜(Cu2)物种,并利用密度泛函理论(DFT)计算探讨了不同氧化剂(O2、N2O 和 H2O2)将 Cu2 氧化成双铜氧(Cu2O2)物种的能力。我们的研究结果表明,在 MIL-53(Al)框架内使用 O2 作为氧化剂形成 Cu2O2 物种在动力学和热力学上都是有利的。此外,Cu2O2/MIL-53(Al)的热稳定性已通过原子分子动力学(AIMD)计算得到验证。使用 DFT 和微动力学模拟方法研究了 Cu2O2/MIL-53(Al) 上完整的 MTM 氧化循环动力学。本研究预测,Cu2O2/MIL-53(Al) 上的 C-H 活化具有较低的自由能垒(0.77 eV),CH3 的高稳定性及其在 C-O 偶联步骤中极低的自由能垒有利于甲醇的形成,而不是甲醛。更重要的是,Cu2O2/MIL-53(Al) 对 CH3 脱氢的抑制作用和较低的甲醇解吸能(0.21 eV)使其表现出较高的甲醇选择性。微观动力学模拟证实,在相对温和的反应条件下(200-280 K 和 1 bar),甲醇就能产生。这项工作为在温和条件下对该系列 MOF 进行选择性 MTM 氧化的可行性提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring complete catalytic cycle of methane oxidation to methanol on Cu2O2 stabilized within MIL-53(Al) framework: A combined DFT and microkinetic study
Although inspiration from copper-based natural enzymes has shown promise in improving catalyst design for methane-to-methanol (MTM) oxidation, high productivity, and selectivity under mild conditions remain a significant challenge. This study constructs the dinuclear copper (Cu2) species stabilized within the metal-organic framework (MOF), MIL-53(Al), containing Cu as efficient catalytic sites and explores the ability of different oxidants (O2, N2O, and H2O2) to oxidize Cu2 into the dicopper-oxo (Cu2O2) species using density functional theory (DFT) calculations. Our results indicate the kinetic and thermodynamic favorability of Cu2O2 species formation using O2 as an oxidant within the MIL-53(Al) framework. Furthermore, the thermal stability of Cu2O2/MIL-53(Al) has been verified via ab initio molecular dynamics (AIMD) calculations. The kinetics of the complete MTM oxidation cycle over Cu2O2/MIL-53(Al) have been studied using both DFT and microkinetic simulation methods. The present study predicts that the C-H activation on the Cu2O2/MIL-53(Al) has a low free energy barrier (0.77 eV) and that the high stability of CH3 and its very low free energy barrier in the C-O coupling step favors the methanol formation over the formaldehyde. More importantly, Cu2O2/MIL-53(Al) exhibits high methanol selectivity owing to the inhibition of CH3 dehydrogenation and low methanol desorption energy (0.21 eV). Microkinetic simulations confirm the methanol production under relatively mild reaction conditions (200–280 K and 1 bar). This work provides insights into the feasibility of selective MTM oxidation over this family of MOF under mild conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1