{"title":"微生物诱导方解石沉淀(MICP)对沙子内部抗侵蚀性的影响:微流控研究","authors":"","doi":"10.1016/j.trgeo.2024.101404","DOIUrl":null,"url":null,"abstract":"<div><div>Fine particle internal erosion involves the detachment, transport, and deposition of fine particles within soil, significantly impacting agriculture, engineering, and environmental protection. Microbially induced calcite precipitation (MICP) has proven to be an effective method for controlling internal erosion. To optimize MICP protocols for effective erosion control, understanding the microscopic mechanisms by which MICP reduces fine particle erosion is essential but remains unclear. In this study, microfluidic chip experiments were conducted to observe the characteristics of calcium carbonate crystals and fine particles before and after MICP reinforcement and erosion. Through quantitative analysis of the calcium carbonate produced by MICP and eroded fine particles, the effects of bacterial density, concentration of cementation solution, and flow rate on the efficiency of MICP in resisting soil internal erosion were investigated. In addition, three primary mechanisms by which MICP reduces fine particle erosion were identified. Firstly, <em>in situ</em> sand stabilization occurs when calcium carbonate generated by MICP bonds and encapsulates fine particles, forming larger particles that remain stable under erosive flow conditions. Secondly, regional sand stabilization is achieved as MICP-produced calcium carbonate crystals narrow or block the flow channels, preventing extensive migration of fine particles. Lastly, adjacent particle stabilization is facilitated by calcium carbonate crystals, which remain stable during water flow erosion and alter the erosion flow lines, creating zones adjacent to the crystals where fine particle movement is minimized. These findings provide a deeper understanding of the role of MICP in erosion control and can inform the development of more effective erosion mitigation strategies.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of Microbially Induced Calcite Precipitation (MICP) on sand internal erosion resistance: A microfluidic study\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fine particle internal erosion involves the detachment, transport, and deposition of fine particles within soil, significantly impacting agriculture, engineering, and environmental protection. Microbially induced calcite precipitation (MICP) has proven to be an effective method for controlling internal erosion. To optimize MICP protocols for effective erosion control, understanding the microscopic mechanisms by which MICP reduces fine particle erosion is essential but remains unclear. In this study, microfluidic chip experiments were conducted to observe the characteristics of calcium carbonate crystals and fine particles before and after MICP reinforcement and erosion. Through quantitative analysis of the calcium carbonate produced by MICP and eroded fine particles, the effects of bacterial density, concentration of cementation solution, and flow rate on the efficiency of MICP in resisting soil internal erosion were investigated. In addition, three primary mechanisms by which MICP reduces fine particle erosion were identified. Firstly, <em>in situ</em> sand stabilization occurs when calcium carbonate generated by MICP bonds and encapsulates fine particles, forming larger particles that remain stable under erosive flow conditions. Secondly, regional sand stabilization is achieved as MICP-produced calcium carbonate crystals narrow or block the flow channels, preventing extensive migration of fine particles. Lastly, adjacent particle stabilization is facilitated by calcium carbonate crystals, which remain stable during water flow erosion and alter the erosion flow lines, creating zones adjacent to the crystals where fine particle movement is minimized. These findings provide a deeper understanding of the role of MICP in erosion control and can inform the development of more effective erosion mitigation strategies.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224002253\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224002253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The impact of Microbially Induced Calcite Precipitation (MICP) on sand internal erosion resistance: A microfluidic study
Fine particle internal erosion involves the detachment, transport, and deposition of fine particles within soil, significantly impacting agriculture, engineering, and environmental protection. Microbially induced calcite precipitation (MICP) has proven to be an effective method for controlling internal erosion. To optimize MICP protocols for effective erosion control, understanding the microscopic mechanisms by which MICP reduces fine particle erosion is essential but remains unclear. In this study, microfluidic chip experiments were conducted to observe the characteristics of calcium carbonate crystals and fine particles before and after MICP reinforcement and erosion. Through quantitative analysis of the calcium carbonate produced by MICP and eroded fine particles, the effects of bacterial density, concentration of cementation solution, and flow rate on the efficiency of MICP in resisting soil internal erosion were investigated. In addition, three primary mechanisms by which MICP reduces fine particle erosion were identified. Firstly, in situ sand stabilization occurs when calcium carbonate generated by MICP bonds and encapsulates fine particles, forming larger particles that remain stable under erosive flow conditions. Secondly, regional sand stabilization is achieved as MICP-produced calcium carbonate crystals narrow or block the flow channels, preventing extensive migration of fine particles. Lastly, adjacent particle stabilization is facilitated by calcium carbonate crystals, which remain stable during water flow erosion and alter the erosion flow lines, creating zones adjacent to the crystals where fine particle movement is minimized. These findings provide a deeper understanding of the role of MICP in erosion control and can inform the development of more effective erosion mitigation strategies.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.