{"title":"用于增强微波吸收的 Fe2O3 装饰多壁碳纳米管复合材料","authors":"Jin-Bo Cheng , Li-Peng Meng , Xin Huang , Si-Yi Luo , Hai-Bo Zhao , Chun-Xia Zhao , Hao-Ran Huang , Hui Li , Yuan-Peng Wu","doi":"10.1016/j.matchemphys.2024.130066","DOIUrl":null,"url":null,"abstract":"<div><div>Developing microwave absorption (MA) materials with a strong absorption ability over a wide bandwidth through a simple and environmentally friendly approach remains a tremendous challenge. Herein, we propose to use an Fe<sup>3+</sup>–tannic acid framework to assist the dispersion of multi-walled carbon nanotubes (MWCNTs) and successfully prepare MWCNTs/porous carbon/α-Fe<sub>2</sub>O<sub>3</sub> composites through freeze-drying and subsequent heat treatment. The dielectric properties and MA performance can be regulated by the heat treatment temperature, which leads to tunable crystalline structure, composition, and graphitization degree of MWCNTs. Consequently, the MWCNTs/porous carbon/α-Fe<sub>2</sub>O<sub>3</sub> composite heat-treated at 300 °C exhibits a high reflection loss (RL) of −58.9 dB and an effective absorption bandwidth (5.28 GHz) with a matched thickness of 2.26 mm at a filler proportion of only 5 wt%, and the related frequency bandwidth with RL below −10 dB reaches 14.3 GHz at a thickness of 2–5 mm. In conclusion, the balance between conduction and polarization loss endows the composite with excellent impedance matching and boosting MA performance. This study offers a guideline for fabricating excellent MA materials through a simple, environmentally friendly method.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130066"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe2O3-decorated multiwall carbon nanotube composites for boosted microwave absorption\",\"authors\":\"Jin-Bo Cheng , Li-Peng Meng , Xin Huang , Si-Yi Luo , Hai-Bo Zhao , Chun-Xia Zhao , Hao-Ran Huang , Hui Li , Yuan-Peng Wu\",\"doi\":\"10.1016/j.matchemphys.2024.130066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing microwave absorption (MA) materials with a strong absorption ability over a wide bandwidth through a simple and environmentally friendly approach remains a tremendous challenge. Herein, we propose to use an Fe<sup>3+</sup>–tannic acid framework to assist the dispersion of multi-walled carbon nanotubes (MWCNTs) and successfully prepare MWCNTs/porous carbon/α-Fe<sub>2</sub>O<sub>3</sub> composites through freeze-drying and subsequent heat treatment. The dielectric properties and MA performance can be regulated by the heat treatment temperature, which leads to tunable crystalline structure, composition, and graphitization degree of MWCNTs. Consequently, the MWCNTs/porous carbon/α-Fe<sub>2</sub>O<sub>3</sub> composite heat-treated at 300 °C exhibits a high reflection loss (RL) of −58.9 dB and an effective absorption bandwidth (5.28 GHz) with a matched thickness of 2.26 mm at a filler proportion of only 5 wt%, and the related frequency bandwidth with RL below −10 dB reaches 14.3 GHz at a thickness of 2–5 mm. In conclusion, the balance between conduction and polarization loss endows the composite with excellent impedance matching and boosting MA performance. This study offers a guideline for fabricating excellent MA materials through a simple, environmentally friendly method.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130066\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424011945\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011945","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过简单、环保的方法开发在宽带宽范围内具有强大吸收能力的微波吸收(MA)材料仍然是一个巨大的挑战。在此,我们提出使用 Fe3+ 单宁酸框架来辅助多壁碳纳米管(MWCNTs)的分散,并通过冷冻干燥和随后的热处理成功制备了多壁碳纳米管/多孔碳/α-Fe2O3 复合材料。热处理温度可调节介电性能和 MA 性能,从而实现 MWCNTs 结晶结构、成分和石墨化程度的可调。因此,在 300 °C 下热处理的 MWCNTs/多孔碳/α-Fe2O3 复合材料表现出 -58.9 dB 的高反射损耗(RL)和有效吸收带宽(5.28 GHz),匹配厚度为 2.26 mm,填料比例仅为 5 wt%,RL 低于 -10 dB 的相关频率带宽达到 14.3 GHz,厚度为 2-5 mm。总之,传导损耗和极化损耗之间的平衡使复合材料具有出色的阻抗匹配和增强的 MA 性能。这项研究为通过简单、环保的方法制造出色的 MA 材料提供了指导。
Fe2O3-decorated multiwall carbon nanotube composites for boosted microwave absorption
Developing microwave absorption (MA) materials with a strong absorption ability over a wide bandwidth through a simple and environmentally friendly approach remains a tremendous challenge. Herein, we propose to use an Fe3+–tannic acid framework to assist the dispersion of multi-walled carbon nanotubes (MWCNTs) and successfully prepare MWCNTs/porous carbon/α-Fe2O3 composites through freeze-drying and subsequent heat treatment. The dielectric properties and MA performance can be regulated by the heat treatment temperature, which leads to tunable crystalline structure, composition, and graphitization degree of MWCNTs. Consequently, the MWCNTs/porous carbon/α-Fe2O3 composite heat-treated at 300 °C exhibits a high reflection loss (RL) of −58.9 dB and an effective absorption bandwidth (5.28 GHz) with a matched thickness of 2.26 mm at a filler proportion of only 5 wt%, and the related frequency bandwidth with RL below −10 dB reaches 14.3 GHz at a thickness of 2–5 mm. In conclusion, the balance between conduction and polarization loss endows the composite with excellent impedance matching and boosting MA performance. This study offers a guideline for fabricating excellent MA materials through a simple, environmentally friendly method.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.