{"title":"碳成分对用于氢气进化反应的碳基过渡金属电催化剂性能的影响","authors":"","doi":"10.1016/S1872-5805(24)60880-2","DOIUrl":null,"url":null,"abstract":"<div><div>The hydrogen evolution reaction (HER) is a promising way to produce hydrogen, and the use of non-precious metals with an excellent electrochemical performance is vital for this. Carbon-based transition metal catalysts have high activity and stability, which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry. However, there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts. This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance, including electronic structure control by heteroatom doping, morphology adjustment, and the influence of self-supporting materials. It not only analyzes the progress in HER, but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of the carbon components on the performance of carbon-based transition metal electrocatalysts for the hydrogen evolution reaction\",\"authors\":\"\",\"doi\":\"10.1016/S1872-5805(24)60880-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The hydrogen evolution reaction (HER) is a promising way to produce hydrogen, and the use of non-precious metals with an excellent electrochemical performance is vital for this. Carbon-based transition metal catalysts have high activity and stability, which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry. However, there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts. This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance, including electronic structure control by heteroatom doping, morphology adjustment, and the influence of self-supporting materials. It not only analyzes the progress in HER, but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.</div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608802\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608802","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
氢进化反应(HER)是一种前景广阔的制氢方法,使用电化学性能优异的非贵金属对此至关重要。碳基过渡金属催化剂具有高活性和高稳定性,对降低制氢成本和促进制氢工业的发展具有重要意义。然而,关于碳成分对这些电催化剂性能的影响还缺乏讨论。这篇文献综述讨论了这些催化剂中碳成分的选择及其对催化性能的影响,包括杂原子掺杂的电子结构控制、形貌调整以及自支撑材料的影响。它不仅分析了 HER 的研究进展,还为合成高性能碳基过渡金属催化剂提供了指导。
The effect of the carbon components on the performance of carbon-based transition metal electrocatalysts for the hydrogen evolution reaction
The hydrogen evolution reaction (HER) is a promising way to produce hydrogen, and the use of non-precious metals with an excellent electrochemical performance is vital for this. Carbon-based transition metal catalysts have high activity and stability, which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry. However, there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts. This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance, including electronic structure control by heteroatom doping, morphology adjustment, and the influence of self-supporting materials. It not only analyzes the progress in HER, but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.