Patxi Fernandez-Zelaia , Saket Thapliyal , Rangasayee Kannan , Peeyush Nandwana , Yukinori Yamamoto , Andrzej Nycz , Vincent Paquit , Michael M. Kirka
{"title":"用于生成式合金设计的去噪扩散概率模型","authors":"Patxi Fernandez-Zelaia , Saket Thapliyal , Rangasayee Kannan , Peeyush Nandwana , Yukinori Yamamoto , Andrzej Nycz , Vincent Paquit , Michael M. Kirka","doi":"10.1016/j.addma.2024.104478","DOIUrl":null,"url":null,"abstract":"<div><div>Inverse material design is an extremely challenging optimization task made difficult by, in part, the highly nonlinear relationship linking performance with composition. Quantitative approaches have improved significantly owing to advances in high throughput experimentation and computational thermodynamics. However, existing physics-based tools are mostly forward models; input a chemistry and obtain a prediction. More recently the materials community has leveraged advances in the machine learning community to establish novel inverse design frameworks. Very recently denoising diffusion probabilistic models have been shown to be extremely powerful generators producing synthetic data of various modalities e.g. images, text, audio, tables, etc.. In this work a novel framework for alloy design and optimization is proposed leveraging these class of models. Five key generative tasks are demonstrated (1) unconditional generation (2) composition conditioned generation (3) property conditioned generation (4) multi-feedstock conditioned generation and (5) generative optimization. These methods were tested on three case studies: high entropy alloy design, superalloy binder jet additive manufacturing, and in-situ dual-feedstock wire-arc additive manufacturing. Results indicate that the established models are extremely flexible, expressive, and robust. The architecture’s flexibility and training procedure empower the model to learn complex intra-compositional and composition-property relationships. Furthermore, the probabilistic nature of these models makes them well suited for addressing solution non-uniqueness and tackling uncertainty quantification tasks. While the fidelity and quantity of the underlying training data is paramount, we envision that future alloy design frameworks will make extensive use of these kinds of machine learning models as “search” tools bolstering the utility of experimental and computational approaches.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104478"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising diffusion probabilistic models for generative alloy design\",\"authors\":\"Patxi Fernandez-Zelaia , Saket Thapliyal , Rangasayee Kannan , Peeyush Nandwana , Yukinori Yamamoto , Andrzej Nycz , Vincent Paquit , Michael M. Kirka\",\"doi\":\"10.1016/j.addma.2024.104478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inverse material design is an extremely challenging optimization task made difficult by, in part, the highly nonlinear relationship linking performance with composition. Quantitative approaches have improved significantly owing to advances in high throughput experimentation and computational thermodynamics. However, existing physics-based tools are mostly forward models; input a chemistry and obtain a prediction. More recently the materials community has leveraged advances in the machine learning community to establish novel inverse design frameworks. Very recently denoising diffusion probabilistic models have been shown to be extremely powerful generators producing synthetic data of various modalities e.g. images, text, audio, tables, etc.. In this work a novel framework for alloy design and optimization is proposed leveraging these class of models. Five key generative tasks are demonstrated (1) unconditional generation (2) composition conditioned generation (3) property conditioned generation (4) multi-feedstock conditioned generation and (5) generative optimization. These methods were tested on three case studies: high entropy alloy design, superalloy binder jet additive manufacturing, and in-situ dual-feedstock wire-arc additive manufacturing. Results indicate that the established models are extremely flexible, expressive, and robust. The architecture’s flexibility and training procedure empower the model to learn complex intra-compositional and composition-property relationships. Furthermore, the probabilistic nature of these models makes them well suited for addressing solution non-uniqueness and tackling uncertainty quantification tasks. While the fidelity and quantity of the underlying training data is paramount, we envision that future alloy design frameworks will make extensive use of these kinds of machine learning models as “search” tools bolstering the utility of experimental and computational approaches.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"94 \",\"pages\":\"Article 104478\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424005244\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005244","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Denoising diffusion probabilistic models for generative alloy design
Inverse material design is an extremely challenging optimization task made difficult by, in part, the highly nonlinear relationship linking performance with composition. Quantitative approaches have improved significantly owing to advances in high throughput experimentation and computational thermodynamics. However, existing physics-based tools are mostly forward models; input a chemistry and obtain a prediction. More recently the materials community has leveraged advances in the machine learning community to establish novel inverse design frameworks. Very recently denoising diffusion probabilistic models have been shown to be extremely powerful generators producing synthetic data of various modalities e.g. images, text, audio, tables, etc.. In this work a novel framework for alloy design and optimization is proposed leveraging these class of models. Five key generative tasks are demonstrated (1) unconditional generation (2) composition conditioned generation (3) property conditioned generation (4) multi-feedstock conditioned generation and (5) generative optimization. These methods were tested on three case studies: high entropy alloy design, superalloy binder jet additive manufacturing, and in-situ dual-feedstock wire-arc additive manufacturing. Results indicate that the established models are extremely flexible, expressive, and robust. The architecture’s flexibility and training procedure empower the model to learn complex intra-compositional and composition-property relationships. Furthermore, the probabilistic nature of these models makes them well suited for addressing solution non-uniqueness and tackling uncertainty quantification tasks. While the fidelity and quantity of the underlying training data is paramount, we envision that future alloy design frameworks will make extensive use of these kinds of machine learning models as “search” tools bolstering the utility of experimental and computational approaches.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.