基于运动学校准和关节变量预测的打磨机器人轨迹误差补偿方法

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Robotics and Computer-integrated Manufacturing Pub Date : 2024-10-25 DOI:10.1016/j.rcim.2024.102889
Kaiwei Ma , Fengyu Xu , Qingyu Xu , Shuang Gao , Guo-Ping Jiang
{"title":"基于运动学校准和关节变量预测的打磨机器人轨迹误差补偿方法","authors":"Kaiwei Ma ,&nbsp;Fengyu Xu ,&nbsp;Qingyu Xu ,&nbsp;Shuang Gao ,&nbsp;Guo-Ping Jiang","doi":"10.1016/j.rcim.2024.102889","DOIUrl":null,"url":null,"abstract":"<div><div>Trajectory accuracy, a crucial metric in assessing the dynamic performance of grinding robots, is influenced by the uncertain movement of the tool center point, directly impacting the surface quality of processed workpieces. This article introduces an innovative method for compensating trajectory errors. Initially, a strategy for error compensation is derived using differential kinematics theory. Subsequently, a robot kinematic calibration method utilizing ring particle swarm optimization (RPSO) is proposed to address static errors in the grinding robot. Simultaneously, a method for predicting robot joint variables based on a dual-channel feedforward neural network (DCFNN) is designed to mitigate dynamic errors. Finally, a simulation platform is developed to validate the proposed method. Simulation analysis using extensive data demonstrates an 89.3% improvement in absolute position accuracy and a 74.2% reduction in error fluctuation range, outperforming sparrow search algorithm (SSA), improved mayfly algorithm (IMA), multi-representation integrated predictive neural network (MRIPNN), etc. Algorithmic comparison reveals that kinematic calibration significantly reduces the average trajectory error, while joint variable prediction notably minimizes error fluctuation. Validation through trajectory straightness testing and a 3D printing propeller grinding experiment achieves a trajectory straightness of 0.2425 mm. Implementing this method enables achieving 86.1% surface machining allowance within tolerance, making it an optimal solution for grinding robots.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102889"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory error compensation method for grinding robots based on kinematic calibration and joint variable prediction\",\"authors\":\"Kaiwei Ma ,&nbsp;Fengyu Xu ,&nbsp;Qingyu Xu ,&nbsp;Shuang Gao ,&nbsp;Guo-Ping Jiang\",\"doi\":\"10.1016/j.rcim.2024.102889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Trajectory accuracy, a crucial metric in assessing the dynamic performance of grinding robots, is influenced by the uncertain movement of the tool center point, directly impacting the surface quality of processed workpieces. This article introduces an innovative method for compensating trajectory errors. Initially, a strategy for error compensation is derived using differential kinematics theory. Subsequently, a robot kinematic calibration method utilizing ring particle swarm optimization (RPSO) is proposed to address static errors in the grinding robot. Simultaneously, a method for predicting robot joint variables based on a dual-channel feedforward neural network (DCFNN) is designed to mitigate dynamic errors. Finally, a simulation platform is developed to validate the proposed method. Simulation analysis using extensive data demonstrates an 89.3% improvement in absolute position accuracy and a 74.2% reduction in error fluctuation range, outperforming sparrow search algorithm (SSA), improved mayfly algorithm (IMA), multi-representation integrated predictive neural network (MRIPNN), etc. Algorithmic comparison reveals that kinematic calibration significantly reduces the average trajectory error, while joint variable prediction notably minimizes error fluctuation. Validation through trajectory straightness testing and a 3D printing propeller grinding experiment achieves a trajectory straightness of 0.2425 mm. Implementing this method enables achieving 86.1% surface machining allowance within tolerance, making it an optimal solution for grinding robots.</div></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"92 \",\"pages\":\"Article 102889\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0736584524001765\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001765","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

轨迹精度是评估打磨机器人动态性能的关键指标,它受到刀具中心点不确定运动的影响,直接影响加工工件的表面质量。本文介绍了一种创新的轨迹误差补偿方法。首先,利用微分运动学理论推导出一种误差补偿策略。随后,提出了一种利用环形粒子群优化(RPSO)的机器人运动学校准方法,以解决打磨机器人的静态误差问题。同时,设计了一种基于双通道前馈神经网络(DCFNN)的机器人关节变量预测方法,以减少动态误差。最后,开发了一个仿真平台来验证所提出的方法。利用大量数据进行的仿真分析表明,绝对位置精度提高了 89.3%,误差波动范围缩小了 74.2%,优于麻雀搜索算法(SSA)、改进的蜉蝣算法(IMA)、多表征集成预测神经网络(MRIPNN)等。通过算法比较发现,运动校准能显著降低平均轨迹误差,而联合变量预测则能显著减少误差波动。通过轨迹直线度测试和 3D 打印螺旋桨研磨实验验证,轨迹直线度达到 0.2425 毫米。采用这种方法后,表面加工余量在公差范围内达到了 86.1%,成为打磨机器人的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory error compensation method for grinding robots based on kinematic calibration and joint variable prediction
Trajectory accuracy, a crucial metric in assessing the dynamic performance of grinding robots, is influenced by the uncertain movement of the tool center point, directly impacting the surface quality of processed workpieces. This article introduces an innovative method for compensating trajectory errors. Initially, a strategy for error compensation is derived using differential kinematics theory. Subsequently, a robot kinematic calibration method utilizing ring particle swarm optimization (RPSO) is proposed to address static errors in the grinding robot. Simultaneously, a method for predicting robot joint variables based on a dual-channel feedforward neural network (DCFNN) is designed to mitigate dynamic errors. Finally, a simulation platform is developed to validate the proposed method. Simulation analysis using extensive data demonstrates an 89.3% improvement in absolute position accuracy and a 74.2% reduction in error fluctuation range, outperforming sparrow search algorithm (SSA), improved mayfly algorithm (IMA), multi-representation integrated predictive neural network (MRIPNN), etc. Algorithmic comparison reveals that kinematic calibration significantly reduces the average trajectory error, while joint variable prediction notably minimizes error fluctuation. Validation through trajectory straightness testing and a 3D printing propeller grinding experiment achieves a trajectory straightness of 0.2425 mm. Implementing this method enables achieving 86.1% surface machining allowance within tolerance, making it an optimal solution for grinding robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Computer-integrated Manufacturing
Robotics and Computer-integrated Manufacturing 工程技术-工程:制造
CiteScore
24.10
自引率
13.50%
发文量
160
审稿时长
50 days
期刊介绍: The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.
期刊最新文献
Knowledge extraction for additive manufacturing process via named entity recognition with LLMs Digital Twin-driven multi-scale characterization of machining quality: current status, challenges, and future perspectives A dual knowledge embedded hybrid model based on augmented data and improved loss function for tool wear monitoring A real-time collision avoidance method for redundant dual-arm robots in an open operational environment Less gets more attention: A novel human-centered MR remote collaboration assembly method with information recommendation and visual enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1