Seyed Ali Yazdanparast , Seyed Hessameddin Zegordi , Toktam Khatibi
{"title":"Proposing a model based on deep reinforcement learning for real-time scheduling of collaborative customization remanufacturing","authors":"Seyed Ali Yazdanparast , Seyed Hessameddin Zegordi , Toktam Khatibi","doi":"10.1016/j.rcim.2025.102980","DOIUrl":null,"url":null,"abstract":"<div><div>The mass production of products in recent decades has led to the excessive exploitation of global resources and environmental degradation. Researchers tackle this challenge by proposing methods for reusing end-of-life products, including remanufacturing strategies. On the other hand, today's consumers seek products that completely fulfill their needs. For this reason, leading manufacturers prioritize customization to improve consumer satisfaction. In contrast to previous studies, this research investigates the real-time scheduling problem of intelligent systems in remanufacturing collaboratively customized products. To address this problem, the multi-agent deep Q-network method is proposed and designed. The elements of this method are defined for each remanufacturing department, including disassembly, cleaning-repair, and assembly stations. The experimental data is simulated to evaluate the proposed method based on a realistic smartphone assembly environment that can produce 46,656 unique products. Despite the disruption caused by the arrival of new jobs, the proposed method's results outperform those of the combined genetic algorithm. They can reduce factory costs by >6 %.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102980"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584525000341","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The mass production of products in recent decades has led to the excessive exploitation of global resources and environmental degradation. Researchers tackle this challenge by proposing methods for reusing end-of-life products, including remanufacturing strategies. On the other hand, today's consumers seek products that completely fulfill their needs. For this reason, leading manufacturers prioritize customization to improve consumer satisfaction. In contrast to previous studies, this research investigates the real-time scheduling problem of intelligent systems in remanufacturing collaboratively customized products. To address this problem, the multi-agent deep Q-network method is proposed and designed. The elements of this method are defined for each remanufacturing department, including disassembly, cleaning-repair, and assembly stations. The experimental data is simulated to evaluate the proposed method based on a realistic smartphone assembly environment that can produce 46,656 unique products. Despite the disruption caused by the arrival of new jobs, the proposed method's results outperform those of the combined genetic algorithm. They can reduce factory costs by >6 %.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.