{"title":"Generalizing kinematic skill learning to energy efficient dynamic motion planning using optimized Dynamic Movement Primitives","authors":"Tian Xu , Siddharth Singh , Qing Chang","doi":"10.1016/j.rcim.2025.102983","DOIUrl":null,"url":null,"abstract":"<div><div>In manufacturing, automating the generation of dynamic trajectories for diverse robots and loads in response to kinematic task requirements presents a significant challenge. Previous research has primarily addressed kinematic trajectory generation and dynamic motion planning as separate endeavors, with integrated solutions rarely explored. This paper presents a novel methodology that combines reinforcement learning (RL)-based kinematic skill learning, dynamic modeling and an enhanced version of Dynamic Movement Primitives (DMP). Utilizing a pre-established skill library, the RL-enabled method generates multiple kinematic trajectories that fulfill the specific task requirements. These trajectories are further refined by dynamic modeling, selecting paths that minimize energy consumption tailored to specific robot types and loads. The newly proposed Optimized Normalized Dynamic Motion Primitive (ON-DMP) enhances obstacle avoidance with minimal energy consumption, remaining effective in novel environments. Validated through both simulated and real-world experiments, this methodology shows robust results in improving task completion in dynamic real-world environments without the need of reprogramming.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102983"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584525000377","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In manufacturing, automating the generation of dynamic trajectories for diverse robots and loads in response to kinematic task requirements presents a significant challenge. Previous research has primarily addressed kinematic trajectory generation and dynamic motion planning as separate endeavors, with integrated solutions rarely explored. This paper presents a novel methodology that combines reinforcement learning (RL)-based kinematic skill learning, dynamic modeling and an enhanced version of Dynamic Movement Primitives (DMP). Utilizing a pre-established skill library, the RL-enabled method generates multiple kinematic trajectories that fulfill the specific task requirements. These trajectories are further refined by dynamic modeling, selecting paths that minimize energy consumption tailored to specific robot types and loads. The newly proposed Optimized Normalized Dynamic Motion Primitive (ON-DMP) enhances obstacle avoidance with minimal energy consumption, remaining effective in novel environments. Validated through both simulated and real-world experiments, this methodology shows robust results in improving task completion in dynamic real-world environments without the need of reprogramming.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.