Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan
{"title":"用于酶固定化和功能化的基于滚动圈扩增技术的 DNA 酶纳米结构","authors":"Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan","doi":"10.1016/j.chempr.2024.10.002","DOIUrl":null,"url":null,"abstract":"Enzymes with ingenious structures and diverse functions are crucial for biomedical applications but face challenges like instability, limited targetability, and delivery complexity. We developed core-shell DNA-enzyme conjugates using rolling circle amplification (RCA), creating RCA-based DNA-enzyme nanostructure (RCA-DEN) for efficient enzyme immobilization and functionalization. RCA-DEN, characterized by densely packed nucleic acids and negligible disruption of enzyme activity, increases the stability of enzymes and nucleic acids while reducing technical difficulties, making it a versatile platform for diverse biomedical applications. This approach facilitates the modular customization of enzymes and the incorporation of functionalities such as aptamers and DNAzymes. The efficacy of RCA-DEN has been demonstrated in several areas, including selective catalysis, cascade catalysis, dynamic monitoring of intracellular chemical processes, and synergistic therapeutic interventions against tumors. Overall, this work provides a new perspective on enzyme immobilization and functionalization, paving the way for broader biomedical applications of enzymes.","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rolling circle amplification-based DNA-enzyme nanostructure for immobilization and functionalization of enzymes\",\"authors\":\"Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan\",\"doi\":\"10.1016/j.chempr.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzymes with ingenious structures and diverse functions are crucial for biomedical applications but face challenges like instability, limited targetability, and delivery complexity. We developed core-shell DNA-enzyme conjugates using rolling circle amplification (RCA), creating RCA-based DNA-enzyme nanostructure (RCA-DEN) for efficient enzyme immobilization and functionalization. RCA-DEN, characterized by densely packed nucleic acids and negligible disruption of enzyme activity, increases the stability of enzymes and nucleic acids while reducing technical difficulties, making it a versatile platform for diverse biomedical applications. This approach facilitates the modular customization of enzymes and the incorporation of functionalities such as aptamers and DNAzymes. The efficacy of RCA-DEN has been demonstrated in several areas, including selective catalysis, cascade catalysis, dynamic monitoring of intracellular chemical processes, and synergistic therapeutic interventions against tumors. Overall, this work provides a new perspective on enzyme immobilization and functionalization, paving the way for broader biomedical applications of enzymes.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.10.002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
具有巧妙结构和多样化功能的酶对生物医学应用至关重要,但也面临着不稳定性、靶向性有限和传递复杂性等挑战。我们利用滚动圆扩增(RCA)技术开发了核壳DNA-酶共轭物,形成了基于RCA的DNA-酶纳米结构(RCA-DEN),实现了酶的高效固定和功能化。RCA-DEN 的特点是核酸密集包装,对酶活性的干扰微乎其微,在增加酶和核酸稳定性的同时降低了技术难度,使其成为一个可用于多种生物医学应用的多功能平台。这种方法有利于对酶进行模块化定制,并加入适配体和 DNA 酶等功能。RCA-DEN 的功效已在多个领域得到证实,包括选择性催化、级联催化、细胞内化学过程的动态监测以及针对肿瘤的协同治疗干预。总之,这项工作为酶的固定化和功能化提供了一个新的视角,为酶更广泛的生物医学应用铺平了道路。
Rolling circle amplification-based DNA-enzyme nanostructure for immobilization and functionalization of enzymes
Enzymes with ingenious structures and diverse functions are crucial for biomedical applications but face challenges like instability, limited targetability, and delivery complexity. We developed core-shell DNA-enzyme conjugates using rolling circle amplification (RCA), creating RCA-based DNA-enzyme nanostructure (RCA-DEN) for efficient enzyme immobilization and functionalization. RCA-DEN, characterized by densely packed nucleic acids and negligible disruption of enzyme activity, increases the stability of enzymes and nucleic acids while reducing technical difficulties, making it a versatile platform for diverse biomedical applications. This approach facilitates the modular customization of enzymes and the incorporation of functionalities such as aptamers and DNAzymes. The efficacy of RCA-DEN has been demonstrated in several areas, including selective catalysis, cascade catalysis, dynamic monitoring of intracellular chemical processes, and synergistic therapeutic interventions against tumors. Overall, this work provides a new perspective on enzyme immobilization and functionalization, paving the way for broader biomedical applications of enzymes.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.