Clemens Fink, Joel Mata Edjokola, Marijo Telenta, Merit Bodner
{"title":"聚合物电解质膜燃料电池催化剂降解建模应用于三维计算流体动力学模拟","authors":"Clemens Fink, Joel Mata Edjokola, Marijo Telenta, Merit Bodner","doi":"10.1002/fuce.202300237","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm<sup>2</sup> under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation\",\"authors\":\"Clemens Fink, Joel Mata Edjokola, Marijo Telenta, Merit Bodner\",\"doi\":\"10.1002/fuce.202300237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm<sup>2</sup> under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.</p>\\n </div>\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300237\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300237","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation
In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm2 under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.