Mohammad Nasirul Haque, Bret W Tobalske, Bo Cheng, Haoxiang Luo
{"title":"蜂鸟身体在逃逸机动飞行力学中的惯性耦合。","authors":"Mohammad Nasirul Haque, Bret W Tobalske, Bo Cheng, Haoxiang Luo","doi":"10.1098/rsif.2024.0391","DOIUrl":null,"url":null,"abstract":"<p><p>When a hovering hummingbird performs a rapid escape manoeuvre in response to a perceived threat from the front side, its body may go through simultaneous pitch, yaw and roll rotations. In this study, we examined the inertial coupling of the three-axis body rotations and its effect on the flight mechanics of the manoeuvre using analyses of high-speed videos as well as high-fidelity computational modelling of the aerodynamics and inertial forces. We found that while a bird's pitch-up was occurring, inertial coupling between yaw and roll helped slow down and terminate the pitch, thus serving as a passive control mechanism for the manoeuvre. Furthermore, an inertial coupling between pitch-up and roll can help accelerate yaw before the roll-yaw coupling. Different from the aerodynamic mechanisms that aircraft and animal flyers typically rely on for flight control, we hypothesize that inertial coupling is a built-in mechanism in the flight mechanics of hummingbirds that helps them achieve superb aerial agility.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 219","pages":"20240391"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial coupling of the hummingbird body in the flight mechanics of an escape manoeuvre.\",\"authors\":\"Mohammad Nasirul Haque, Bret W Tobalske, Bo Cheng, Haoxiang Luo\",\"doi\":\"10.1098/rsif.2024.0391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When a hovering hummingbird performs a rapid escape manoeuvre in response to a perceived threat from the front side, its body may go through simultaneous pitch, yaw and roll rotations. In this study, we examined the inertial coupling of the three-axis body rotations and its effect on the flight mechanics of the manoeuvre using analyses of high-speed videos as well as high-fidelity computational modelling of the aerodynamics and inertial forces. We found that while a bird's pitch-up was occurring, inertial coupling between yaw and roll helped slow down and terminate the pitch, thus serving as a passive control mechanism for the manoeuvre. Furthermore, an inertial coupling between pitch-up and roll can help accelerate yaw before the roll-yaw coupling. Different from the aerodynamic mechanisms that aircraft and animal flyers typically rely on for flight control, we hypothesize that inertial coupling is a built-in mechanism in the flight mechanics of hummingbirds that helps them achieve superb aerial agility.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 219\",\"pages\":\"20240391\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0391\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0391","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Inertial coupling of the hummingbird body in the flight mechanics of an escape manoeuvre.
When a hovering hummingbird performs a rapid escape manoeuvre in response to a perceived threat from the front side, its body may go through simultaneous pitch, yaw and roll rotations. In this study, we examined the inertial coupling of the three-axis body rotations and its effect on the flight mechanics of the manoeuvre using analyses of high-speed videos as well as high-fidelity computational modelling of the aerodynamics and inertial forces. We found that while a bird's pitch-up was occurring, inertial coupling between yaw and roll helped slow down and terminate the pitch, thus serving as a passive control mechanism for the manoeuvre. Furthermore, an inertial coupling between pitch-up and roll can help accelerate yaw before the roll-yaw coupling. Different from the aerodynamic mechanisms that aircraft and animal flyers typically rely on for flight control, we hypothesize that inertial coupling is a built-in mechanism in the flight mechanics of hummingbirds that helps them achieve superb aerial agility.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.