Z Ji, H Chen, J I Zheng, J Yan, H Lu, J He, Y Zhu, S Wang, L Li, R S Ge, Y Liu
{"title":"二硫代氨基甲酸盐杀菌剂抑制人和大鼠芳香化酶的活性取决于其结构:3D-QSAR 分析和分子模拟。","authors":"Z Ji, H Chen, J I Zheng, J Yan, H Lu, J He, Y Zhu, S Wang, L Li, R S Ge, Y Liu","doi":"10.1080/1062936X.2024.2420243","DOIUrl":null,"url":null,"abstract":"<p><p>Dithiocarbamate fungicides have been widely used in agricultural practices due to their effective control of fungal diseases, thereby contributing to global food security and agricultural productivity. In this study, the inhibitory potency of eight compounds on human and rat aromatase (CYP19A1) activity was evaluated. The results revealed that zineb exhibited the highest inhibitory potency on human CYP19A1 (IC<sub>50</sub>, 2.79 μM). Maneb (IC<sub>50</sub>, 3.09 μM), thiram (IC<sub>50</sub>, 4.76 μM), and ferbam (IC<sub>50</sub>, 6.04 μM) also demonstrated potent inhibition on human CYP19A1. For the rat CYP19A1, disulfiram (IC<sub>50</sub>, 1.90 μM) displayed the strongest inhibition followed by maneb (2.16 μM), zineb (2.54 μM), and thiram (6.99 μM). These dithiocarbamates acted as mixed/non-competitive inhibitors of human and rat CYP19A1. Dithiothreitol (DTT), a reducing agent, partially rescued thiram-mediated inhibition when incubated at the same. Moreover, positive correlations were observed between log <i>P</i>, topological polar surface area, molecular weight, and heavy atoms and IC<sub>50</sub> values. 3D-QSAR analysis revealed the hydrogen bond acceptor and donor play critical roles in the binding of dithiocarbamates to human CYP19A1. In silico analysis showed that dithiocarbamates bind to the haem binding site, containing Cys437 residues. In conclusion, some dithiocarbamates potently inhibit human and rat CYP19A1 via interacting with haem-binding Cys437 residues.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"949-970"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dithiocarbamate fungicides suppress aromatase activity in human and rat aromatase activity depending on structures: 3D-QSAR analysis and molecular simulation.\",\"authors\":\"Z Ji, H Chen, J I Zheng, J Yan, H Lu, J He, Y Zhu, S Wang, L Li, R S Ge, Y Liu\",\"doi\":\"10.1080/1062936X.2024.2420243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dithiocarbamate fungicides have been widely used in agricultural practices due to their effective control of fungal diseases, thereby contributing to global food security and agricultural productivity. In this study, the inhibitory potency of eight compounds on human and rat aromatase (CYP19A1) activity was evaluated. The results revealed that zineb exhibited the highest inhibitory potency on human CYP19A1 (IC<sub>50</sub>, 2.79 μM). Maneb (IC<sub>50</sub>, 3.09 μM), thiram (IC<sub>50</sub>, 4.76 μM), and ferbam (IC<sub>50</sub>, 6.04 μM) also demonstrated potent inhibition on human CYP19A1. For the rat CYP19A1, disulfiram (IC<sub>50</sub>, 1.90 μM) displayed the strongest inhibition followed by maneb (2.16 μM), zineb (2.54 μM), and thiram (6.99 μM). These dithiocarbamates acted as mixed/non-competitive inhibitors of human and rat CYP19A1. Dithiothreitol (DTT), a reducing agent, partially rescued thiram-mediated inhibition when incubated at the same. Moreover, positive correlations were observed between log <i>P</i>, topological polar surface area, molecular weight, and heavy atoms and IC<sub>50</sub> values. 3D-QSAR analysis revealed the hydrogen bond acceptor and donor play critical roles in the binding of dithiocarbamates to human CYP19A1. In silico analysis showed that dithiocarbamates bind to the haem binding site, containing Cys437 residues. In conclusion, some dithiocarbamates potently inhibit human and rat CYP19A1 via interacting with haem-binding Cys437 residues.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"949-970\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2420243\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2420243","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dithiocarbamate fungicides suppress aromatase activity in human and rat aromatase activity depending on structures: 3D-QSAR analysis and molecular simulation.
Dithiocarbamate fungicides have been widely used in agricultural practices due to their effective control of fungal diseases, thereby contributing to global food security and agricultural productivity. In this study, the inhibitory potency of eight compounds on human and rat aromatase (CYP19A1) activity was evaluated. The results revealed that zineb exhibited the highest inhibitory potency on human CYP19A1 (IC50, 2.79 μM). Maneb (IC50, 3.09 μM), thiram (IC50, 4.76 μM), and ferbam (IC50, 6.04 μM) also demonstrated potent inhibition on human CYP19A1. For the rat CYP19A1, disulfiram (IC50, 1.90 μM) displayed the strongest inhibition followed by maneb (2.16 μM), zineb (2.54 μM), and thiram (6.99 μM). These dithiocarbamates acted as mixed/non-competitive inhibitors of human and rat CYP19A1. Dithiothreitol (DTT), a reducing agent, partially rescued thiram-mediated inhibition when incubated at the same. Moreover, positive correlations were observed between log P, topological polar surface area, molecular weight, and heavy atoms and IC50 values. 3D-QSAR analysis revealed the hydrogen bond acceptor and donor play critical roles in the binding of dithiocarbamates to human CYP19A1. In silico analysis showed that dithiocarbamates bind to the haem binding site, containing Cys437 residues. In conclusion, some dithiocarbamates potently inhibit human and rat CYP19A1 via interacting with haem-binding Cys437 residues.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.