J.B. Guillaume , J.L. Da Lage , S. Mezdour , F. Marion-Poll , C. Terrol , C.M.C. Brouzes , P. Schmidely
{"title":"黑翅大实蝇幼虫发育和取食基质过程中的淀粉酶活性:对淀粉消化率和外部消化的启示。","authors":"J.B. Guillaume , J.L. Da Lage , S. Mezdour , F. Marion-Poll , C. Terrol , C.M.C. Brouzes , P. Schmidely","doi":"10.1016/j.animal.2024.101337","DOIUrl":null,"url":null,"abstract":"<div><div>Black soldier fly larvae (<strong>BSFL</strong>; <em>Hermetia illucens</em>) hold promise for converting biowaste into proteins and lipids for feed. Dietary starch is efficiently digested by the larvae and influences larval performance, but the mechanisms of starch digestion remain poorly understood. This study investigated changes in individual weight and amylase activity in BSFL after 4, 7 and 11 days of feeding for five substrates varying in starch content and type: chicken feed (<strong>CF</strong>), corn gluten feed (<strong>CGF</strong>), wheat bran (<strong>WB</strong>), wheat distillers grain (<strong>WDG</strong>) and discarded potatoes (<strong>DP</strong>). Substrate amylase activities were also measured with and without larvae (feeding and fermenting trays, respectively) over time in order to explore external digestion. Feed conversion ratio (<strong>FCR</strong>) and estimated digestibility (<strong>ED</strong>) of DM and starch were assessed at the end of the experiment. The ranking for best FCR was CF, WB, CGF, WDG and DP. In feeding trays, ED of DM was 69.8 ± 1.8, 59.5 ± 2.9, 58.6 ± 0.7, 45.4 ± 0.6 and 19.5 ± 0.8% in CF, DP, WB, CGF and WDG, respectively. Estimated digestibility of starch reached 100% with WB and CGF, followed by CF (88.2 ± 2.3%), DP (85.2 ± 1.2%) and WDG (43.1 ± 1.0%). Larval amylase activity increased with growth for all substrates and dropped when approaching pupation. No relationship was found between larval amylase activity and substrate starch or other nutrient content, but a negative correlation was reported with the reducing sugar content of the larvae, suggesting glucose repression of amylase production. Amylase activity decreased with time in all feeding and fermenting substrates except WDG and DP. <em>In vitro</em> degradation assays indicated that BSFL amylase was nine times more efficient on raw corn or wheat starch than on raw potato starch, highlighting that starch structure is a major driver of digestibility. Western blot analysis revealed the presence of BSFL amylase in the feeding substrate, hinting at external digestion. Larval amylase was purified to identify its optimal pH (5.0–6.5) and temperature (70 °C). These results highlight that starch content is not a major driver of amylase activity in BSFL and suggest that other non-investigated factors could have had a crucial impact on the activity of larval digestive enzymes, such as microbial community of the substrate and presence of amylase inhibitors. This study also provides insights into the evolution of BSFL digestive activity during their development and the occurrence of external digestion.</div></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":"18 11","pages":"Article 101337"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amylase activity across black soldier fly larvae development and feeding substrates: insights on starch digestibility and external digestion\",\"authors\":\"J.B. Guillaume , J.L. Da Lage , S. Mezdour , F. Marion-Poll , C. Terrol , C.M.C. Brouzes , P. Schmidely\",\"doi\":\"10.1016/j.animal.2024.101337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Black soldier fly larvae (<strong>BSFL</strong>; <em>Hermetia illucens</em>) hold promise for converting biowaste into proteins and lipids for feed. Dietary starch is efficiently digested by the larvae and influences larval performance, but the mechanisms of starch digestion remain poorly understood. This study investigated changes in individual weight and amylase activity in BSFL after 4, 7 and 11 days of feeding for five substrates varying in starch content and type: chicken feed (<strong>CF</strong>), corn gluten feed (<strong>CGF</strong>), wheat bran (<strong>WB</strong>), wheat distillers grain (<strong>WDG</strong>) and discarded potatoes (<strong>DP</strong>). Substrate amylase activities were also measured with and without larvae (feeding and fermenting trays, respectively) over time in order to explore external digestion. Feed conversion ratio (<strong>FCR</strong>) and estimated digestibility (<strong>ED</strong>) of DM and starch were assessed at the end of the experiment. The ranking for best FCR was CF, WB, CGF, WDG and DP. In feeding trays, ED of DM was 69.8 ± 1.8, 59.5 ± 2.9, 58.6 ± 0.7, 45.4 ± 0.6 and 19.5 ± 0.8% in CF, DP, WB, CGF and WDG, respectively. Estimated digestibility of starch reached 100% with WB and CGF, followed by CF (88.2 ± 2.3%), DP (85.2 ± 1.2%) and WDG (43.1 ± 1.0%). Larval amylase activity increased with growth for all substrates and dropped when approaching pupation. No relationship was found between larval amylase activity and substrate starch or other nutrient content, but a negative correlation was reported with the reducing sugar content of the larvae, suggesting glucose repression of amylase production. Amylase activity decreased with time in all feeding and fermenting substrates except WDG and DP. <em>In vitro</em> degradation assays indicated that BSFL amylase was nine times more efficient on raw corn or wheat starch than on raw potato starch, highlighting that starch structure is a major driver of digestibility. Western blot analysis revealed the presence of BSFL amylase in the feeding substrate, hinting at external digestion. Larval amylase was purified to identify its optimal pH (5.0–6.5) and temperature (70 °C). These results highlight that starch content is not a major driver of amylase activity in BSFL and suggest that other non-investigated factors could have had a crucial impact on the activity of larval digestive enzymes, such as microbial community of the substrate and presence of amylase inhibitors. This study also provides insights into the evolution of BSFL digestive activity during their development and the occurrence of external digestion.</div></div>\",\"PeriodicalId\":50789,\"journal\":{\"name\":\"Animal\",\"volume\":\"18 11\",\"pages\":\"Article 101337\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175173112400274X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175173112400274X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Amylase activity across black soldier fly larvae development and feeding substrates: insights on starch digestibility and external digestion
Black soldier fly larvae (BSFL; Hermetia illucens) hold promise for converting biowaste into proteins and lipids for feed. Dietary starch is efficiently digested by the larvae and influences larval performance, but the mechanisms of starch digestion remain poorly understood. This study investigated changes in individual weight and amylase activity in BSFL after 4, 7 and 11 days of feeding for five substrates varying in starch content and type: chicken feed (CF), corn gluten feed (CGF), wheat bran (WB), wheat distillers grain (WDG) and discarded potatoes (DP). Substrate amylase activities were also measured with and without larvae (feeding and fermenting trays, respectively) over time in order to explore external digestion. Feed conversion ratio (FCR) and estimated digestibility (ED) of DM and starch were assessed at the end of the experiment. The ranking for best FCR was CF, WB, CGF, WDG and DP. In feeding trays, ED of DM was 69.8 ± 1.8, 59.5 ± 2.9, 58.6 ± 0.7, 45.4 ± 0.6 and 19.5 ± 0.8% in CF, DP, WB, CGF and WDG, respectively. Estimated digestibility of starch reached 100% with WB and CGF, followed by CF (88.2 ± 2.3%), DP (85.2 ± 1.2%) and WDG (43.1 ± 1.0%). Larval amylase activity increased with growth for all substrates and dropped when approaching pupation. No relationship was found between larval amylase activity and substrate starch or other nutrient content, but a negative correlation was reported with the reducing sugar content of the larvae, suggesting glucose repression of amylase production. Amylase activity decreased with time in all feeding and fermenting substrates except WDG and DP. In vitro degradation assays indicated that BSFL amylase was nine times more efficient on raw corn or wheat starch than on raw potato starch, highlighting that starch structure is a major driver of digestibility. Western blot analysis revealed the presence of BSFL amylase in the feeding substrate, hinting at external digestion. Larval amylase was purified to identify its optimal pH (5.0–6.5) and temperature (70 °C). These results highlight that starch content is not a major driver of amylase activity in BSFL and suggest that other non-investigated factors could have had a crucial impact on the activity of larval digestive enzymes, such as microbial community of the substrate and presence of amylase inhibitors. This study also provides insights into the evolution of BSFL digestive activity during their development and the occurrence of external digestion.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.