利用机器学习推导儿童晚期一般精神病理学的神经生物学亚型。

IF 3.1 Q2 PSYCHIATRY Journal of psychopathology and clinical science Pub Date : 2024-11-01 DOI:10.1037/abn0000898
Gabrielle E Reimann, Randolph M Dupont, Aristeidis Sotiras, Tom Earnest, Hee Jung Jeong, E Leighton Durham, Camille Archer, Tyler M Moore, Benjamin B Lahey, Antonia N Kaczkurkin
{"title":"利用机器学习推导儿童晚期一般精神病理学的神经生物学亚型。","authors":"Gabrielle E Reimann, Randolph M Dupont, Aristeidis Sotiras, Tom Earnest, Hee Jung Jeong, E Leighton Durham, Camille Archer, Tyler M Moore, Benjamin B Lahey, Antonia N Kaczkurkin","doi":"10.1037/abn0000898","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional mental health diagnoses rely on symptom-based classifications. Yet this approach can oversimplify clinical presentations as diagnoses often do not adequately map onto neurobiological features. Alternatively, our study used structural imaging data and a semisupervised machine learning technique, heterogeneity through discriminative analysis, to identify neurobiological subtypes in 9- to 10-year-olds with high psychopathology endorsements (n = 9,027). Our model revealed two stable neurobiological subtypes (adjusted Rand index = 0.38). Subtype 1 showed smaller structural properties, elevated conduct problems and attention-deficit/hyperactivity disorder symptoms, and impaired cognitive performance compared to Subtype 2 and typically developing youth. Subtype 2 had larger structural properties, cognitive abilities comparable to typically developing youth, and elevated internalizing symptoms relative to Subtype 1 and typically developing youth. These subtypes remained stable in their neurobiological characteristics, cognitive ability, and associated psychopathology traits over time. Taken together, our data-driven approach uncovered evidence of neural heterogeneity as demonstrated by structural patterns that map onto divergent profiles of psychopathology symptoms and cognitive performance in youth. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":73914,"journal":{"name":"Journal of psychopathology and clinical science","volume":"133 8","pages":"647-655"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning to derive neurobiological subtypes of general psychopathology in late childhood.\",\"authors\":\"Gabrielle E Reimann, Randolph M Dupont, Aristeidis Sotiras, Tom Earnest, Hee Jung Jeong, E Leighton Durham, Camille Archer, Tyler M Moore, Benjamin B Lahey, Antonia N Kaczkurkin\",\"doi\":\"10.1037/abn0000898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional mental health diagnoses rely on symptom-based classifications. Yet this approach can oversimplify clinical presentations as diagnoses often do not adequately map onto neurobiological features. Alternatively, our study used structural imaging data and a semisupervised machine learning technique, heterogeneity through discriminative analysis, to identify neurobiological subtypes in 9- to 10-year-olds with high psychopathology endorsements (n = 9,027). Our model revealed two stable neurobiological subtypes (adjusted Rand index = 0.38). Subtype 1 showed smaller structural properties, elevated conduct problems and attention-deficit/hyperactivity disorder symptoms, and impaired cognitive performance compared to Subtype 2 and typically developing youth. Subtype 2 had larger structural properties, cognitive abilities comparable to typically developing youth, and elevated internalizing symptoms relative to Subtype 1 and typically developing youth. These subtypes remained stable in their neurobiological characteristics, cognitive ability, and associated psychopathology traits over time. Taken together, our data-driven approach uncovered evidence of neural heterogeneity as demonstrated by structural patterns that map onto divergent profiles of psychopathology symptoms and cognitive performance in youth. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":73914,\"journal\":{\"name\":\"Journal of psychopathology and clinical science\",\"volume\":\"133 8\",\"pages\":\"647-655\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of psychopathology and clinical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1037/abn0000898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of psychopathology and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/abn0000898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

传统的心理健康诊断依赖于基于症状的分类。然而,这种方法可能会过度简化临床表现,因为诊断往往不能充分映射到神经生物学特征上。相反,我们的研究利用结构成像数据和半监督机器学习技术--通过判别分析进行异质性分析--来识别具有高度精神病理学背书的 9 至 10 岁儿童(n = 9,027 人)的神经生物学亚型。我们的模型揭示了两种稳定的神经生物学亚型(调整后的兰德指数 = 0.38)。与亚型 2 和发育正常的青少年相比,亚型 1 显示出较小的结构特征、较高的行为问题和注意力缺陷/多动障碍症状,以及受损的认知能力。与亚型 1 和发育正常的青少年相比,亚型 2 的结构特征较大,认知能力与发育正常的青少年相当,内化症状较重。随着时间的推移,这些亚型的神经生物学特征、认知能力和相关精神病理学特征保持稳定。综上所述,我们的数据驱动方法发现了神经异质性的证据,其结构模式映射到青少年不同的精神病理学症状和认知能力特征上。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using machine learning to derive neurobiological subtypes of general psychopathology in late childhood.

Traditional mental health diagnoses rely on symptom-based classifications. Yet this approach can oversimplify clinical presentations as diagnoses often do not adequately map onto neurobiological features. Alternatively, our study used structural imaging data and a semisupervised machine learning technique, heterogeneity through discriminative analysis, to identify neurobiological subtypes in 9- to 10-year-olds with high psychopathology endorsements (n = 9,027). Our model revealed two stable neurobiological subtypes (adjusted Rand index = 0.38). Subtype 1 showed smaller structural properties, elevated conduct problems and attention-deficit/hyperactivity disorder symptoms, and impaired cognitive performance compared to Subtype 2 and typically developing youth. Subtype 2 had larger structural properties, cognitive abilities comparable to typically developing youth, and elevated internalizing symptoms relative to Subtype 1 and typically developing youth. These subtypes remained stable in their neurobiological characteristics, cognitive ability, and associated psychopathology traits over time. Taken together, our data-driven approach uncovered evidence of neural heterogeneity as demonstrated by structural patterns that map onto divergent profiles of psychopathology symptoms and cognitive performance in youth. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Modeling the dynamics of addiction relapse via the double-well potential system. Adolescent social anxiety is associated with diminished discrimination of anticipated threat and safety in the bed nucleus of the stria terminalis. Prevalence, incidence, impairment, course, and diagnostic progression and transition of eating disorders, overweight, and obesity in a large prospective study of high-risk young women. Reification of the p factor draws attention away from external causes of psychopathology. Clarifying the place of p300 in the empirical structure of psychopathology over development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1