{"title":"整合机器学习模型,从大规模分配实例中学习多标准排序的潜在非单调偏好","authors":"Zhuolin Li , Zhen Zhang , Witold Pedrycz","doi":"10.1016/j.omega.2024.103219","DOIUrl":null,"url":null,"abstract":"<div><div>Learning preferences from assignment examples has attracted considerable attention in the field of multi-criteria sorting (MCS). However, traditional MCS methods, designed to infer decision makers’ preferences from small-scale assignment examples, encounter limitations when confronted with large-scale data sets. Additionally, the presence of decision makers’ non-monotonic preferences for certain criteria in MCS problems necessitates accounting for potential non-monotonicity when devising preference learning methods. To address this, this paper proposes some new models to learn potentially non-monotonic preferences for MCS problems from large-scale assignment examples by leveraging machine learning models. Specifically, we first introduce the <strong>P</strong>iecewise-<strong>L</strong>inear <strong>N</strong>eural <strong>N</strong>etwork (PLNN) model, which leverages the threshold-based value-driven sorting procedure as the underlying sorting model and integrates a perceptron-based model to establish piecewise-linear marginal value functions to approximate real ones. On this basis, we address MCS problems with criteria interactions and extend the PLNN model to develop the <strong>P</strong>iecewise-<strong>L</strong>inear <strong>F</strong>actorization <strong>M</strong>achine-based <strong>N</strong>eural <strong>N</strong>etwork (PLFMNN) model by incorporating the factorization machine to factorize interaction coefficients. Training these models allows us to learn potentially non-monotonic preferences of decision makers. To illustrate the proposed models, we apply them to a red wine quality classification problem. Furthermore, we assess the performance of the proposed models through computational experiments on both artificial and real-world data sets. Additionally, we conduct statistical tests to ascertain the significance of the performance differences. Experimental results reveal that the proposed models are comparable to the multilayer perceptron model and outperform other baseline models on most data sets, thus affirming their efficacy. Finally, we conduct some sensitivity analysis to assess the impact of certain parameters on the performance of the proposed models and compare them with existing studies from a theoretical perspective, further demonstrating their effectiveness.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"131 ","pages":"Article 103219"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning models to learn potentially non-monotonic preferences for multi-criteria sorting from large-scale assignment examples\",\"authors\":\"Zhuolin Li , Zhen Zhang , Witold Pedrycz\",\"doi\":\"10.1016/j.omega.2024.103219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Learning preferences from assignment examples has attracted considerable attention in the field of multi-criteria sorting (MCS). However, traditional MCS methods, designed to infer decision makers’ preferences from small-scale assignment examples, encounter limitations when confronted with large-scale data sets. Additionally, the presence of decision makers’ non-monotonic preferences for certain criteria in MCS problems necessitates accounting for potential non-monotonicity when devising preference learning methods. To address this, this paper proposes some new models to learn potentially non-monotonic preferences for MCS problems from large-scale assignment examples by leveraging machine learning models. Specifically, we first introduce the <strong>P</strong>iecewise-<strong>L</strong>inear <strong>N</strong>eural <strong>N</strong>etwork (PLNN) model, which leverages the threshold-based value-driven sorting procedure as the underlying sorting model and integrates a perceptron-based model to establish piecewise-linear marginal value functions to approximate real ones. On this basis, we address MCS problems with criteria interactions and extend the PLNN model to develop the <strong>P</strong>iecewise-<strong>L</strong>inear <strong>F</strong>actorization <strong>M</strong>achine-based <strong>N</strong>eural <strong>N</strong>etwork (PLFMNN) model by incorporating the factorization machine to factorize interaction coefficients. Training these models allows us to learn potentially non-monotonic preferences of decision makers. To illustrate the proposed models, we apply them to a red wine quality classification problem. Furthermore, we assess the performance of the proposed models through computational experiments on both artificial and real-world data sets. Additionally, we conduct statistical tests to ascertain the significance of the performance differences. Experimental results reveal that the proposed models are comparable to the multilayer perceptron model and outperform other baseline models on most data sets, thus affirming their efficacy. Finally, we conduct some sensitivity analysis to assess the impact of certain parameters on the performance of the proposed models and compare them with existing studies from a theoretical perspective, further demonstrating their effectiveness.</div></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":\"131 \",\"pages\":\"Article 103219\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030504832400183X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030504832400183X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Integrating machine learning models to learn potentially non-monotonic preferences for multi-criteria sorting from large-scale assignment examples
Learning preferences from assignment examples has attracted considerable attention in the field of multi-criteria sorting (MCS). However, traditional MCS methods, designed to infer decision makers’ preferences from small-scale assignment examples, encounter limitations when confronted with large-scale data sets. Additionally, the presence of decision makers’ non-monotonic preferences for certain criteria in MCS problems necessitates accounting for potential non-monotonicity when devising preference learning methods. To address this, this paper proposes some new models to learn potentially non-monotonic preferences for MCS problems from large-scale assignment examples by leveraging machine learning models. Specifically, we first introduce the Piecewise-Linear Neural Network (PLNN) model, which leverages the threshold-based value-driven sorting procedure as the underlying sorting model and integrates a perceptron-based model to establish piecewise-linear marginal value functions to approximate real ones. On this basis, we address MCS problems with criteria interactions and extend the PLNN model to develop the Piecewise-Linear Factorization Machine-based Neural Network (PLFMNN) model by incorporating the factorization machine to factorize interaction coefficients. Training these models allows us to learn potentially non-monotonic preferences of decision makers. To illustrate the proposed models, we apply them to a red wine quality classification problem. Furthermore, we assess the performance of the proposed models through computational experiments on both artificial and real-world data sets. Additionally, we conduct statistical tests to ascertain the significance of the performance differences. Experimental results reveal that the proposed models are comparable to the multilayer perceptron model and outperform other baseline models on most data sets, thus affirming their efficacy. Finally, we conduct some sensitivity analysis to assess the impact of certain parameters on the performance of the proposed models and compare them with existing studies from a theoretical perspective, further demonstrating their effectiveness.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.