{"title":"了解锌水电池中的碘电化学行为","authors":"","doi":"10.1016/j.jechem.2024.09.049","DOIUrl":null,"url":null,"abstract":"<div><div>Iodine is widely used in aqueous zinc batteries (ZBs) due to its abundant resources, low cost, and active redox reactions. In addition to the active material in zinc-iodine batteries, iodine also plays an important role in other ZBs, such as regulating the electrochemical behavior of zinc ions, promoting the reaction kinetic and reversibility of other redox pairs, catalytic behaviors related to iodine reactions, coupling with other halogen ions, shuttle behaviors of polyiodides, etc. However, there is currently a lack of comprehensive discussion on these aspects. Here, this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs. The effect of iodine ions on the Zn<sup>2+</sup> desolvation behaviors and the interfacial behaviors of Zn anode was summarized. Iodine redox pairs boosting other redox pairs, such as MnO<sub>2</sub>/Mn<sup>2+</sup> redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed. Moreover, the catalytic behaviors related to iodine reactions in aqueous ZBs, synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed. Finally, future prospects for designing effective iodine electrochemical behaviors with practicability are proposed, which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the iodine electrochemical behaviors in aqueous zinc batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.jechem.2024.09.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iodine is widely used in aqueous zinc batteries (ZBs) due to its abundant resources, low cost, and active redox reactions. In addition to the active material in zinc-iodine batteries, iodine also plays an important role in other ZBs, such as regulating the electrochemical behavior of zinc ions, promoting the reaction kinetic and reversibility of other redox pairs, catalytic behaviors related to iodine reactions, coupling with other halogen ions, shuttle behaviors of polyiodides, etc. However, there is currently a lack of comprehensive discussion on these aspects. Here, this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs. The effect of iodine ions on the Zn<sup>2+</sup> desolvation behaviors and the interfacial behaviors of Zn anode was summarized. Iodine redox pairs boosting other redox pairs, such as MnO<sub>2</sub>/Mn<sup>2+</sup> redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed. Moreover, the catalytic behaviors related to iodine reactions in aqueous ZBs, synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed. Finally, future prospects for designing effective iodine electrochemical behaviors with practicability are proposed, which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624006739\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006739","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
Understanding the iodine electrochemical behaviors in aqueous zinc batteries
Iodine is widely used in aqueous zinc batteries (ZBs) due to its abundant resources, low cost, and active redox reactions. In addition to the active material in zinc-iodine batteries, iodine also plays an important role in other ZBs, such as regulating the electrochemical behavior of zinc ions, promoting the reaction kinetic and reversibility of other redox pairs, catalytic behaviors related to iodine reactions, coupling with other halogen ions, shuttle behaviors of polyiodides, etc. However, there is currently a lack of comprehensive discussion on these aspects. Here, this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs. The effect of iodine ions on the Zn2+ desolvation behaviors and the interfacial behaviors of Zn anode was summarized. Iodine redox pairs boosting other redox pairs, such as MnO2/Mn2+ redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed. Moreover, the catalytic behaviors related to iodine reactions in aqueous ZBs, synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed. Finally, future prospects for designing effective iodine electrochemical behaviors with practicability are proposed, which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy