Martina Murr , Daniel Wegener , Simon Böke , Cihan Gani , David Mönnich , Maximilian Niyazi , Moritz Schneider , Daniel Zips , Arndt-Christian Müller , Daniela Thorwarth
{"title":"利用剂量累积对前列腺癌进行在线自适应和非自适应磁共振图像引导放射治疗的比较","authors":"Martina Murr , Daniel Wegener , Simon Böke , Cihan Gani , David Mönnich , Maximilian Niyazi , Moritz Schneider , Daniel Zips , Arndt-Christian Müller , Daniela Thorwarth","doi":"10.1016/j.phro.2024.100662","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Conventional image-guided radiotherapy (conv-IGRT) is standard in prostate cancer (PC) but does not account for inter-fraction anatomical changes. Online-adaptive magnetic resonance-guided RT (OA-MRgRT) may improve organ-at-risk (OARs) sparing and clinical target volume (CTV) coverage. The aim of this study was to analyze accumulated OAR and target doses in PC after OA-MRgRT and conv-IGRT in comparison to pre-treatment reference planning (refPlan).</div></div><div><h3>Material and methods</h3><div>Ten patients with PC, previously treated with OA-MRgRT at the 1.5 T MR-Linac (20x3Gy), were included. Accumulated OA-MRgRT doses were determined by deformably registering all fraction’s MR-images. Conv-IGRT was simulated through rigid registration of the planning computed tomography with each fraction’s MR-image for dose mapping/accumulation. Dose-volume parameters (DVPs), including CTV D50% and D98%, rectum, bladder, urethra, Dmax and V56Gy for OA-MRgRT, conv-IGRT and refPlan were compared using the Wilcoxon signed-rank test. Clinical relevance of accumulated dose differences was analyzed using a normal-tissue complication-probability model.</div></div><div><h3>Results</h3><div>CTV-DVPs were comparable, whereas OA-MRgRT yielded decreased median OAR-DVPs compared to conv-IGRT, except for bladder V56Gy. OA-MRgRT demonstrated significantly lower median rectum Dmax over conv-IGRT (59.1/59.9 Gy, p = 0.006) and refPlan (60.1 Gy, p = 0.012). Similarly, OA-MRgRT yielded reduced median bladder Dmax compared to conv-IGRT (60.0/60.4 Gy, p = 0.006), and refPlan (61.2 Gy, p = 0.002). Overall, accumulated dose differences were small and did not translate into clinically relevant effects.</div></div><div><h3>Conclusion</h3><div>Deformably accumulated OA-MRgRT using 20x3Gy in PC showed significant but small dosimetric differences comparted to conv-IGRT. Feasibility of a dose accumulation methodology was demonstrated, which may be relevant for evaluating future hypo-fractionated OA-MRgRT approaches.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of online adaptive and non-adaptive magnetic resonance image-guided radiation therapy in prostate cancer using dose accumulation\",\"authors\":\"Martina Murr , Daniel Wegener , Simon Böke , Cihan Gani , David Mönnich , Maximilian Niyazi , Moritz Schneider , Daniel Zips , Arndt-Christian Müller , Daniela Thorwarth\",\"doi\":\"10.1016/j.phro.2024.100662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Conventional image-guided radiotherapy (conv-IGRT) is standard in prostate cancer (PC) but does not account for inter-fraction anatomical changes. Online-adaptive magnetic resonance-guided RT (OA-MRgRT) may improve organ-at-risk (OARs) sparing and clinical target volume (CTV) coverage. The aim of this study was to analyze accumulated OAR and target doses in PC after OA-MRgRT and conv-IGRT in comparison to pre-treatment reference planning (refPlan).</div></div><div><h3>Material and methods</h3><div>Ten patients with PC, previously treated with OA-MRgRT at the 1.5 T MR-Linac (20x3Gy), were included. Accumulated OA-MRgRT doses were determined by deformably registering all fraction’s MR-images. Conv-IGRT was simulated through rigid registration of the planning computed tomography with each fraction’s MR-image for dose mapping/accumulation. Dose-volume parameters (DVPs), including CTV D50% and D98%, rectum, bladder, urethra, Dmax and V56Gy for OA-MRgRT, conv-IGRT and refPlan were compared using the Wilcoxon signed-rank test. Clinical relevance of accumulated dose differences was analyzed using a normal-tissue complication-probability model.</div></div><div><h3>Results</h3><div>CTV-DVPs were comparable, whereas OA-MRgRT yielded decreased median OAR-DVPs compared to conv-IGRT, except for bladder V56Gy. OA-MRgRT demonstrated significantly lower median rectum Dmax over conv-IGRT (59.1/59.9 Gy, p = 0.006) and refPlan (60.1 Gy, p = 0.012). Similarly, OA-MRgRT yielded reduced median bladder Dmax compared to conv-IGRT (60.0/60.4 Gy, p = 0.006), and refPlan (61.2 Gy, p = 0.002). Overall, accumulated dose differences were small and did not translate into clinically relevant effects.</div></div><div><h3>Conclusion</h3><div>Deformably accumulated OA-MRgRT using 20x3Gy in PC showed significant but small dosimetric differences comparted to conv-IGRT. Feasibility of a dose accumulation methodology was demonstrated, which may be relevant for evaluating future hypo-fractionated OA-MRgRT approaches.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Comparison of online adaptive and non-adaptive magnetic resonance image-guided radiation therapy in prostate cancer using dose accumulation
Background and purpose
Conventional image-guided radiotherapy (conv-IGRT) is standard in prostate cancer (PC) but does not account for inter-fraction anatomical changes. Online-adaptive magnetic resonance-guided RT (OA-MRgRT) may improve organ-at-risk (OARs) sparing and clinical target volume (CTV) coverage. The aim of this study was to analyze accumulated OAR and target doses in PC after OA-MRgRT and conv-IGRT in comparison to pre-treatment reference planning (refPlan).
Material and methods
Ten patients with PC, previously treated with OA-MRgRT at the 1.5 T MR-Linac (20x3Gy), were included. Accumulated OA-MRgRT doses were determined by deformably registering all fraction’s MR-images. Conv-IGRT was simulated through rigid registration of the planning computed tomography with each fraction’s MR-image for dose mapping/accumulation. Dose-volume parameters (DVPs), including CTV D50% and D98%, rectum, bladder, urethra, Dmax and V56Gy for OA-MRgRT, conv-IGRT and refPlan were compared using the Wilcoxon signed-rank test. Clinical relevance of accumulated dose differences was analyzed using a normal-tissue complication-probability model.
Results
CTV-DVPs were comparable, whereas OA-MRgRT yielded decreased median OAR-DVPs compared to conv-IGRT, except for bladder V56Gy. OA-MRgRT demonstrated significantly lower median rectum Dmax over conv-IGRT (59.1/59.9 Gy, p = 0.006) and refPlan (60.1 Gy, p = 0.012). Similarly, OA-MRgRT yielded reduced median bladder Dmax compared to conv-IGRT (60.0/60.4 Gy, p = 0.006), and refPlan (61.2 Gy, p = 0.002). Overall, accumulated dose differences were small and did not translate into clinically relevant effects.
Conclusion
Deformably accumulated OA-MRgRT using 20x3Gy in PC showed significant but small dosimetric differences comparted to conv-IGRT. Feasibility of a dose accumulation methodology was demonstrated, which may be relevant for evaluating future hypo-fractionated OA-MRgRT approaches.