Zilong Xu , Zhe Li , Wenda Xu , Lixiang Wan , Jiyong Kuang , Baoqing Liu
{"title":"同轴搅拌器驱动泥浆系统中的气液传质研究","authors":"Zilong Xu , Zhe Li , Wenda Xu , Lixiang Wan , Jiyong Kuang , Baoqing Liu","doi":"10.1016/j.cep.2024.110039","DOIUrl":null,"url":null,"abstract":"<div><div>The coaxial mixer was applied to the gas-liquid mass transfer process in slurry systems containing up to 8 vol% solids. The effects of impeller type, impeller speed, solid content, and gas flow rate were examined, and a correlation for the volumetric mass transfer coefficient was established. The findings indicate that at identical impeller speeds, the combination of an anchor and Rushton turbine exhibited the highest volumetric mass transfer coefficient and gas hold-up among coaxial mixers. However, when the pitched blade turbine with a down-pumping direction was utilized as the inner impeller, the coaxial mixer demonstrated superior performance under the same power consumption conditions. Additionally, the lower anchor speed was found to improve gas-liquid mass transfer, whereas a higher speed would lead to poor dispersion of gas phase, thereby deteriorating the performance of coaxial mixers. Increasing solid content caused a continuous decline in both the volumetric mass transfer coefficient and gas hold-up, while a rise in gas flow rate had the positive effect. Finally, the correlation developed for the volumetric mass transfer coefficient in slurry systems showed a deviation of less than 20% between predicted and measured values.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of gas-liquid mass transfer in slurry systems driven by the coaxial mixer\",\"authors\":\"Zilong Xu , Zhe Li , Wenda Xu , Lixiang Wan , Jiyong Kuang , Baoqing Liu\",\"doi\":\"10.1016/j.cep.2024.110039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The coaxial mixer was applied to the gas-liquid mass transfer process in slurry systems containing up to 8 vol% solids. The effects of impeller type, impeller speed, solid content, and gas flow rate were examined, and a correlation for the volumetric mass transfer coefficient was established. The findings indicate that at identical impeller speeds, the combination of an anchor and Rushton turbine exhibited the highest volumetric mass transfer coefficient and gas hold-up among coaxial mixers. However, when the pitched blade turbine with a down-pumping direction was utilized as the inner impeller, the coaxial mixer demonstrated superior performance under the same power consumption conditions. Additionally, the lower anchor speed was found to improve gas-liquid mass transfer, whereas a higher speed would lead to poor dispersion of gas phase, thereby deteriorating the performance of coaxial mixers. Increasing solid content caused a continuous decline in both the volumetric mass transfer coefficient and gas hold-up, while a rise in gas flow rate had the positive effect. Finally, the correlation developed for the volumetric mass transfer coefficient in slurry systems showed a deviation of less than 20% between predicted and measured values.</div></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124003775\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003775","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of gas-liquid mass transfer in slurry systems driven by the coaxial mixer
The coaxial mixer was applied to the gas-liquid mass transfer process in slurry systems containing up to 8 vol% solids. The effects of impeller type, impeller speed, solid content, and gas flow rate were examined, and a correlation for the volumetric mass transfer coefficient was established. The findings indicate that at identical impeller speeds, the combination of an anchor and Rushton turbine exhibited the highest volumetric mass transfer coefficient and gas hold-up among coaxial mixers. However, when the pitched blade turbine with a down-pumping direction was utilized as the inner impeller, the coaxial mixer demonstrated superior performance under the same power consumption conditions. Additionally, the lower anchor speed was found to improve gas-liquid mass transfer, whereas a higher speed would lead to poor dispersion of gas phase, thereby deteriorating the performance of coaxial mixers. Increasing solid content caused a continuous decline in both the volumetric mass transfer coefficient and gas hold-up, while a rise in gas flow rate had the positive effect. Finally, the correlation developed for the volumetric mass transfer coefficient in slurry systems showed a deviation of less than 20% between predicted and measured values.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.