{"title":"仿制药开发早期阶段的机器学习驱动生物等效性风险评估","authors":"Dejan Krajcar , Dejan Velušček , Iztok Grabnar","doi":"10.1016/j.ejpb.2024.114553","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bioequivalence risk assessment as an extension of quality risk management lacks examples of quantitative approaches to risk assessment at an early stage of generic drug development. The aim of our study was to develop a model-based approach for bioequivalence risk assessment that uses pharmacokinetic and physicochemical characteristics of drugs as predictors and would standardize the first step of risk assessment.</div></div><div><h3>Methods</h3><div>The Sandoz in-house bioequivalence database of 128 bioequivalence studies with poorly soluble drugs (23.5% non-bioequivalent) was used to train and validate the model. Four different modeling approaches, random forest, XGBoost, logistic regression and naïve Bayes, were compared.</div></div><div><h3>Results</h3><div>Among the best performing machine learning models, random forest was selected and optimized for the number of features, resulting in an accuracy of 84% on the test data set. The most important features for prediction were those related to solubility (dose number, acid dissociation constant), absorption and elimination rate, effective permeability, variability of pharmacokinetic endpoints, and absolute bioavailability. All features had a conceivable influence on the model predictions.</div></div><div><h3>Conclusion</h3><div>The model was used to develop a bioequivalence risk assessment approach to categorize drugs in early development into high, medium or low risk classes.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114553"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning driven bioequivalence risk assessment at an early stage of generic drug development\",\"authors\":\"Dejan Krajcar , Dejan Velušček , Iztok Grabnar\",\"doi\":\"10.1016/j.ejpb.2024.114553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Bioequivalence risk assessment as an extension of quality risk management lacks examples of quantitative approaches to risk assessment at an early stage of generic drug development. The aim of our study was to develop a model-based approach for bioequivalence risk assessment that uses pharmacokinetic and physicochemical characteristics of drugs as predictors and would standardize the first step of risk assessment.</div></div><div><h3>Methods</h3><div>The Sandoz in-house bioequivalence database of 128 bioequivalence studies with poorly soluble drugs (23.5% non-bioequivalent) was used to train and validate the model. Four different modeling approaches, random forest, XGBoost, logistic regression and naïve Bayes, were compared.</div></div><div><h3>Results</h3><div>Among the best performing machine learning models, random forest was selected and optimized for the number of features, resulting in an accuracy of 84% on the test data set. The most important features for prediction were those related to solubility (dose number, acid dissociation constant), absorption and elimination rate, effective permeability, variability of pharmacokinetic endpoints, and absolute bioavailability. All features had a conceivable influence on the model predictions.</div></div><div><h3>Conclusion</h3><div>The model was used to develop a bioequivalence risk assessment approach to categorize drugs in early development into high, medium or low risk classes.</div></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"205 \",\"pages\":\"Article 114553\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003795\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003795","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Machine learning driven bioequivalence risk assessment at an early stage of generic drug development
Background
Bioequivalence risk assessment as an extension of quality risk management lacks examples of quantitative approaches to risk assessment at an early stage of generic drug development. The aim of our study was to develop a model-based approach for bioequivalence risk assessment that uses pharmacokinetic and physicochemical characteristics of drugs as predictors and would standardize the first step of risk assessment.
Methods
The Sandoz in-house bioequivalence database of 128 bioequivalence studies with poorly soluble drugs (23.5% non-bioequivalent) was used to train and validate the model. Four different modeling approaches, random forest, XGBoost, logistic regression and naïve Bayes, were compared.
Results
Among the best performing machine learning models, random forest was selected and optimized for the number of features, resulting in an accuracy of 84% on the test data set. The most important features for prediction were those related to solubility (dose number, acid dissociation constant), absorption and elimination rate, effective permeability, variability of pharmacokinetic endpoints, and absolute bioavailability. All features had a conceivable influence on the model predictions.
Conclusion
The model was used to develop a bioequivalence risk assessment approach to categorize drugs in early development into high, medium or low risk classes.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.