基于目标平滑频谱、使用频谱形状参数进行地动选择的新算法

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2024-10-31 DOI:10.1016/j.soildyn.2024.109060
Cuihua Li , Huimin Hong , Jiayi Zheng
{"title":"基于目标平滑频谱、使用频谱形状参数进行地动选择的新算法","authors":"Cuihua Li ,&nbsp;Huimin Hong ,&nbsp;Jiayi Zheng","doi":"10.1016/j.soildyn.2024.109060","DOIUrl":null,"url":null,"abstract":"<div><div>Ground motion selection is a pivotal step in the performance-based seismic design and assessments, because it bridges the gap between seismic hazard and structural response. Presently one prevalent practice involves constructing target spectra for the selection of ground motion records. This paper introduces a novel method to construct the target spectrum, transformed the acceleration response spectrum into a normalized spectrum <em>β</em> multiplied by <em>PGA</em> where <em>β</em> = <em>Sa</em>/<em>PGA</em>. The normalized spectrum is smoothed to obtain the spectral shape parameters used to construct the target smooth spectrum for ground motion selection. Two sets of ground motions, selected using the proposed method and CS, are subsequently employed in the analysis of a six-story, five-span building model to assess the structural fragility and the associated seismic risk to examine the efficiency of the proposed method. Results indicated that the probability of exceeding the Life Safety (LS) performance level is lower for CS compared to the proposed approach. Seismic risk curve derived from the proposed methodology, however, is close to those obtained through CS. In conclusion, the proposed methodology effectively mitigates the limitations inherent in the conventional ground motion selection approaches and allow the performance of structures to be determined at a more realistic scale.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109060"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new algorithm for ground motion selection based on target smooth spectrum using spectral shape parameters\",\"authors\":\"Cuihua Li ,&nbsp;Huimin Hong ,&nbsp;Jiayi Zheng\",\"doi\":\"10.1016/j.soildyn.2024.109060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ground motion selection is a pivotal step in the performance-based seismic design and assessments, because it bridges the gap between seismic hazard and structural response. Presently one prevalent practice involves constructing target spectra for the selection of ground motion records. This paper introduces a novel method to construct the target spectrum, transformed the acceleration response spectrum into a normalized spectrum <em>β</em> multiplied by <em>PGA</em> where <em>β</em> = <em>Sa</em>/<em>PGA</em>. The normalized spectrum is smoothed to obtain the spectral shape parameters used to construct the target smooth spectrum for ground motion selection. Two sets of ground motions, selected using the proposed method and CS, are subsequently employed in the analysis of a six-story, five-span building model to assess the structural fragility and the associated seismic risk to examine the efficiency of the proposed method. Results indicated that the probability of exceeding the Life Safety (LS) performance level is lower for CS compared to the proposed approach. Seismic risk curve derived from the proposed methodology, however, is close to those obtained through CS. In conclusion, the proposed methodology effectively mitigates the limitations inherent in the conventional ground motion selection approaches and allow the performance of structures to be determined at a more realistic scale.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"188 \",\"pages\":\"Article 109060\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124006122\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124006122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

地震动选择是基于性能的抗震设计和评估的关键步骤,因为它在地震灾害和结构响应之间架起了桥梁。目前,一种普遍的做法是构建目标谱来选择地震动记录。本文介绍了一种构建目标频谱的新方法,将加速度反应频谱转化为标准化频谱 β 乘以 PGA,其中 β = Sa/PGA。对归一化频谱进行平滑处理,以获得用于构建目标平滑频谱的频谱形状参数,从而进行地面运动选择。随后,在对一个六层五跨建筑模型进行分析时,采用了利用建议方法和 CS 方法选择的两组地面运动,以评估结构脆性和相关地震风险,从而检验建议方法的效率。结果表明,与建议的方法相比,CS 方法超过生命安全(LS)性能水平的概率较低。然而,建议方法得出的地震风险曲线与 CS 得出的曲线接近。总之,建议的方法有效地缓解了传统地面运动选择方法固有的局限性,使结构性能的确定更加切合实际。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new algorithm for ground motion selection based on target smooth spectrum using spectral shape parameters
Ground motion selection is a pivotal step in the performance-based seismic design and assessments, because it bridges the gap between seismic hazard and structural response. Presently one prevalent practice involves constructing target spectra for the selection of ground motion records. This paper introduces a novel method to construct the target spectrum, transformed the acceleration response spectrum into a normalized spectrum β multiplied by PGA where β = Sa/PGA. The normalized spectrum is smoothed to obtain the spectral shape parameters used to construct the target smooth spectrum for ground motion selection. Two sets of ground motions, selected using the proposed method and CS, are subsequently employed in the analysis of a six-story, five-span building model to assess the structural fragility and the associated seismic risk to examine the efficiency of the proposed method. Results indicated that the probability of exceeding the Life Safety (LS) performance level is lower for CS compared to the proposed approach. Seismic risk curve derived from the proposed methodology, however, is close to those obtained through CS. In conclusion, the proposed methodology effectively mitigates the limitations inherent in the conventional ground motion selection approaches and allow the performance of structures to be determined at a more realistic scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Evaluation of the static and dynamic behavior characteristics of biopolymer-treated soil at varying moisture contents Knowledge structure and research progress in earthquake-induced liquefaction assessment from 2000 to 2023: A scientometric analysis incorporating domain knowledge A novel physics-constrained neural network: An illustration of ground motion models Investigation of dynamic responses of slopes in various anchor cable failure modes Post-tensioned coupling beams: Mechanics, cyclic response, and damage evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1