{"title":"回火和再时效 (RRA) 工艺对 AA 7020 铝合金腐蚀特性的影响","authors":"Mustafa Safa Yilmaz","doi":"10.1007/s11665-024-10166-6","DOIUrl":null,"url":null,"abstract":"<div><p>AA 7020 alloy, widely used in the aviation and automobile industries with its specific strength, has become a material in demand in recent years by different sectors. Heat treatment to T6 temper increases the mechanical strength by precipitating hardening (ageing). Overaging to T73 temper improves the corrosion behavior of the alloy. A RRA (retrogression and re-ageing) heat treatment is a good alternative as it improves the corrosion behaviour compared to T6 temper and provides better mechanical values than precipitates from a material in T6 temper are redissolved by a short-term heat treatment between 160 and 280 °C (retrogression) which is then followed by a re-ageing under T6 heat treatment condition.</p><p>In this study, the AA7020 alloy was retrogressed for 1, 5, 15, 30, and 45 minutes at 180, 200, and 240 °C. Before, it was re-ageing at 120 °C for 24 hours. The hardness, conductivity, and corrosion behaviour of the heat-treated samples were determined, and the microstructure was evaluated by light microscopy, scanning electron microscope (SEM), and Energy-dispersive x-ray spectroscopy (EDX) methods.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 20","pages":"11231 - 11239"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy\",\"authors\":\"Mustafa Safa Yilmaz\",\"doi\":\"10.1007/s11665-024-10166-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>AA 7020 alloy, widely used in the aviation and automobile industries with its specific strength, has become a material in demand in recent years by different sectors. Heat treatment to T6 temper increases the mechanical strength by precipitating hardening (ageing). Overaging to T73 temper improves the corrosion behavior of the alloy. A RRA (retrogression and re-ageing) heat treatment is a good alternative as it improves the corrosion behaviour compared to T6 temper and provides better mechanical values than precipitates from a material in T6 temper are redissolved by a short-term heat treatment between 160 and 280 °C (retrogression) which is then followed by a re-ageing under T6 heat treatment condition.</p><p>In this study, the AA7020 alloy was retrogressed for 1, 5, 15, 30, and 45 minutes at 180, 200, and 240 °C. Before, it was re-ageing at 120 °C for 24 hours. The hardness, conductivity, and corrosion behaviour of the heat-treated samples were determined, and the microstructure was evaluated by light microscopy, scanning electron microscope (SEM), and Energy-dispersive x-ray spectroscopy (EDX) methods.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 20\",\"pages\":\"11231 - 11239\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-024-10166-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-10166-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
AA 7020 合金以其特殊的强度被广泛应用于航空和汽车行业,近年来已成为各行各业都需要的材料。热处理至 T6 回火后,可通过析出硬化(时效)提高机械强度。过度时效至 T73 回火可改善合金的腐蚀性能。RRA(回火和再时效)热处理是一种很好的替代方法,因为与 T6 回火相比,它能改善腐蚀性能,并提供更好的机械性能。在本研究中,AA7020 合金在 180、200 和 240 ℃ 下分别回火 1、5、15、30 和 45 分钟。在此之前,AA7020 合金在 120 °C 下进行了 24 小时的再时效处理。研究测定了热处理样品的硬度、电导率和腐蚀行为,并采用光学显微镜、扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDX)方法评估了微观结构。
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy
AA 7020 alloy, widely used in the aviation and automobile industries with its specific strength, has become a material in demand in recent years by different sectors. Heat treatment to T6 temper increases the mechanical strength by precipitating hardening (ageing). Overaging to T73 temper improves the corrosion behavior of the alloy. A RRA (retrogression and re-ageing) heat treatment is a good alternative as it improves the corrosion behaviour compared to T6 temper and provides better mechanical values than precipitates from a material in T6 temper are redissolved by a short-term heat treatment between 160 and 280 °C (retrogression) which is then followed by a re-ageing under T6 heat treatment condition.
In this study, the AA7020 alloy was retrogressed for 1, 5, 15, 30, and 45 minutes at 180, 200, and 240 °C. Before, it was re-ageing at 120 °C for 24 hours. The hardness, conductivity, and corrosion behaviour of the heat-treated samples were determined, and the microstructure was evaluated by light microscopy, scanning electron microscope (SEM), and Energy-dispersive x-ray spectroscopy (EDX) methods.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered