通过全基因组关联图谱确定的第 17 号染色体上的一个 QTL 控制着葫芦 L. 的采后耐寒性。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2024-11-01 DOI:10.1111/ppl.14602
Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena
{"title":"通过全基因组关联图谱确定的第 17 号染色体上的一个 QTL 控制着葫芦 L. 的采后耐寒性。","authors":"Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena","doi":"10.1111/ppl.14602","DOIUrl":null,"url":null,"abstract":"<p><p>The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14602"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L.\",\"authors\":\"Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena\",\"doi\":\"10.1111/ppl.14602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 6\",\"pages\":\"e14602\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14602\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14602","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全世界栽培的葫芦科植物是植物王国中最多样化的物种之一。在这项研究中,对多种栽培品种的耐寒性进行了表征,以发现在冷藏过程中提高未成熟果实采后品质的等位基因变异。为此,对来自世界各地的 126 个品种的果实进行了冷藏 3、7 和 14 天后的失重和冷害评估,将其分为耐寒品种、部分耐寒品种和敏感品种。为了验证这一分类,对不同品种(耐寒与敏感)的抗氧化能力和脂质过氧化(MDA)进行了评估。在冷藏过程中,敏感品种的抗氧化能力明显下降,而耐受品种的抗氧化能力保持不变。此外,在此期间,敏感品种的 MDA 积累更高。最后,利用 CuGenDBv2 中的 GBS 数据并结合失重百分比数据进行的 GWAS 分析,确定了位于第 17 号染色体上的候选 QTL,该 QTL 调控西葫芦的采后耐寒性。该区域包含四个 SNPs,其替代等位基因与冷藏期间较低的失重率和冷冻损伤指数显著相关。其中两个 SNP 位于参与乙烯感知的基因 CpERS1 的 3' UTR 区域。另外两个 SNPs 在果胶甲酯酶抑制剂基因(CpPMI)的编码区产生错义突变。本文讨论了该 QTL 和这些变异在耐寒性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L.

The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Regulatory effect of pipecolic acid (Pip) on the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to bacterial treatment. Tree species and drought: Two mysterious long-standing counterparts. Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1