内体-空泡转运系统是木格鲁氏杆菌中 Pmk1 MAP 激酶信号通路的对接平台。

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences New Phytologist Pub Date : 2024-11-04 DOI:10.1111/nph.20235
Qing Wang, Jing Wang, Zhicheng Huang, Yan Li, Hui Li, Pengyun Huang, Yingying Cai, Jiaoyu Wang, Xiaohong Liu, Fu-Cheng Lin, Jianping Lu
{"title":"内体-空泡转运系统是木格鲁氏杆菌中 Pmk1 MAP 激酶信号通路的对接平台。","authors":"Qing Wang, Jing Wang, Zhicheng Huang, Yan Li, Hui Li, Pengyun Huang, Yingying Cai, Jiaoyu Wang, Xiaohong Liu, Fu-Cheng Lin, Jianping Lu","doi":"10.1111/nph.20235","DOIUrl":null,"url":null,"abstract":"<p><p>In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae.\",\"authors\":\"Qing Wang, Jing Wang, Zhicheng Huang, Yan Li, Hui Li, Pengyun Huang, Yingying Cai, Jiaoyu Wang, Xiaohong Liu, Fu-Cheng Lin, Jianping Lu\",\"doi\":\"10.1111/nph.20235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20235\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20235","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在 Magnaporthe oryzae 中,Pmk1 MAP 激酶信号通路调节着附着体的形成、植物的穿透、效应物的分泌和侵袭性生长。虽然 Mst11-Mst7-Pmk1 级联早在二十年前就已定性,但对其在细胞内网络中的信号传导的了解仍然有限。在这项研究中,我们证明了内质体表面支撑着 Pmk1 MAPK 信号,而 Msb2 则激活了 M. oryzae 内质体上的 Ras2。蛋白质共定位表明,Msb2、Ras2、Cap1、Mst50、Mst11、Mst7 和 Pmk1 附着在晚期内体膜上。对内质体-液泡运输系统的破坏会影响 Pmk1 的磷酸化。当 Msb2 感受到植物信号时,它会内化并激活内体膜表面的 Ras2,通过 Mst11 和 Mst7 将信号传递给 Pmk1。信号感应蛋白和传递蛋白被泛素化,并在晚期内体和液泡中分类降解,从而终止信号传递。附属体从晚期内体向液泡过渡需要植物的渗透和细胞内张力的降低。我们的发现揭示了一种通过内体-液泡转运支架和控制 Pmk1 MAPK 信号的有效机制,为 Pmk1 MAPK 途径调节 M. oryzae 发育和致病性的细胞学和分子机制提供了新的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae.

In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
期刊最新文献
The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae. A global overview of insect-fern interactions and its ecological trends. Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota. Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases. Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1