MEFDPN:用于评估数据不确定性的混合指数族分布后验网络

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2024-10-28 DOI:10.1016/j.eswa.2024.125593
Xinlei Jin , Quan Qian
{"title":"MEFDPN:用于评估数据不确定性的混合指数族分布后验网络","authors":"Xinlei Jin ,&nbsp;Quan Qian","doi":"10.1016/j.eswa.2024.125593","DOIUrl":null,"url":null,"abstract":"<div><div>The computation of uncertainty are crucial for developing a reliable machine learning model. The natural posterior network (NatPN) provides uncertainty estimation for any single exponential family distribution, but real-world data is often complex. Therefore, we introduce a mixture exponential family posterior network (MEFDPN), which extends the prior distribution to a mixture of exponential family distributions, aiming to fit complex distributions that better represent real data. During network training, MEFDPN independently updates the posterior Bayesian estimates for each prior distribution, and the weights of these distributions are updated based on the forward propagation results. Furthermore, MEFDPN calculates two types of uncertainty (aleatoric and epistemic) and combines them using entropy weighting to obtain a comprehensive confidence measure for each data point. Theoretically, MEFDPN achieves higher prediction accuracy, and experimental results demonstrate its capability to compute high-quality data comprehensive confidence. Moreover, it shows encouraging accuracy in Out-of-Distribution(OOD) detection and validation experiments. Finally, we apply MEFDPN to a materials dataset, efficiently filtering out OOD data. This results in a significant enhancement of prediction accuracy for machine learning models. Specifically, removing only 5% of outlier data leads to a 2%–5% improvement in accuracy.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125593"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEFDPN: Mixture exponential family distribution posterior networks for evaluating data uncertainty\",\"authors\":\"Xinlei Jin ,&nbsp;Quan Qian\",\"doi\":\"10.1016/j.eswa.2024.125593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The computation of uncertainty are crucial for developing a reliable machine learning model. The natural posterior network (NatPN) provides uncertainty estimation for any single exponential family distribution, but real-world data is often complex. Therefore, we introduce a mixture exponential family posterior network (MEFDPN), which extends the prior distribution to a mixture of exponential family distributions, aiming to fit complex distributions that better represent real data. During network training, MEFDPN independently updates the posterior Bayesian estimates for each prior distribution, and the weights of these distributions are updated based on the forward propagation results. Furthermore, MEFDPN calculates two types of uncertainty (aleatoric and epistemic) and combines them using entropy weighting to obtain a comprehensive confidence measure for each data point. Theoretically, MEFDPN achieves higher prediction accuracy, and experimental results demonstrate its capability to compute high-quality data comprehensive confidence. Moreover, it shows encouraging accuracy in Out-of-Distribution(OOD) detection and validation experiments. Finally, we apply MEFDPN to a materials dataset, efficiently filtering out OOD data. This results in a significant enhancement of prediction accuracy for machine learning models. Specifically, removing only 5% of outlier data leads to a 2%–5% improvement in accuracy.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"262 \",\"pages\":\"Article 125593\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424024606\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424024606","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

不确定性的计算对于开发可靠的机器学习模型至关重要。自然后验网络(NatPN)可对任何单一指数族分布进行不确定性估计,但现实世界的数据往往很复杂。因此,我们引入了混合指数族后验网络(MEFDPN),它将先验分布扩展为指数族分布的混合分布,旨在拟合更能代表真实数据的复杂分布。在网络训练过程中,MEFDPN 会独立更新每个先验分布的后验贝叶斯估计值,并根据前向传播结果更新这些分布的权重。此外,MEFDPN 还计算两种类型的不确定性(先验不确定性和认识不确定性),并使用熵加权法将它们结合起来,从而为每个数据点获得综合置信度。从理论上讲,MEFDPN 可以获得更高的预测精度,实验结果也证明了它计算高质量数据综合置信度的能力。此外,它在失配(OOD)检测和验证实验中也表现出了令人鼓舞的准确性。最后,我们将 MEFDPN 应用于材料数据集,有效地过滤掉了 OOD 数据。这大大提高了机器学习模型的预测准确性。具体来说,只需去除 5%的离群数据,就能提高 2%-5% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEFDPN: Mixture exponential family distribution posterior networks for evaluating data uncertainty
The computation of uncertainty are crucial for developing a reliable machine learning model. The natural posterior network (NatPN) provides uncertainty estimation for any single exponential family distribution, but real-world data is often complex. Therefore, we introduce a mixture exponential family posterior network (MEFDPN), which extends the prior distribution to a mixture of exponential family distributions, aiming to fit complex distributions that better represent real data. During network training, MEFDPN independently updates the posterior Bayesian estimates for each prior distribution, and the weights of these distributions are updated based on the forward propagation results. Furthermore, MEFDPN calculates two types of uncertainty (aleatoric and epistemic) and combines them using entropy weighting to obtain a comprehensive confidence measure for each data point. Theoretically, MEFDPN achieves higher prediction accuracy, and experimental results demonstrate its capability to compute high-quality data comprehensive confidence. Moreover, it shows encouraging accuracy in Out-of-Distribution(OOD) detection and validation experiments. Finally, we apply MEFDPN to a materials dataset, efficiently filtering out OOD data. This results in a significant enhancement of prediction accuracy for machine learning models. Specifically, removing only 5% of outlier data leads to a 2%–5% improvement in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Anticipating impression using textual sentiment based on ensemble LRD model Trusted commonsense knowledge enhanced depression detection based on three-way decision MSU-Net: Multi-Scale self-attention semantic segmentation method for oil-tea camellia planting area extraction in hilly areas of southern China Editorial Board DAN: Neural network based on dual attention for anomaly detection in ICS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1