Lise Watrin , François Silva , Ludovic Largeau , Nathaniel Findling , Mirella Al Katrib , Muriel Bouttemy , Kassiogé Dembélé , Nicolas Vaissière , Cyril Jadaud , Pavel Bulkin , Jean-Charles Vanel , Erik V. Johnson , Karim Ouaras , Pere Roca i Cabarrocas
{"title":"利用低压远程等离子体化学气相沉积技术实现器件级砷化镓的同层外延生长","authors":"Lise Watrin , François Silva , Ludovic Largeau , Nathaniel Findling , Mirella Al Katrib , Muriel Bouttemy , Kassiogé Dembélé , Nicolas Vaissière , Cyril Jadaud , Pavel Bulkin , Jean-Charles Vanel , Erik V. Johnson , Karim Ouaras , Pere Roca i Cabarrocas","doi":"10.1016/j.mssp.2024.109069","DOIUrl":null,"url":null,"abstract":"<div><div>We have achieved the growth of high-quality, homoepitaxial 100 GaAs thin films at 0.5 mbar and 500 °C using a Remote Plasma Chemical Vapor Deposition (RP-CVD) reactor. With this process, we demonstrate a film growth rate up to 3 μm/h, comparable to the conventional MOCVD technique. The resulting films exhibit structural characteristics close to those of commercial GaAs wafers, with excellent crystalline quality as confirmed by SAED patterns and XRD rocking-curve measurements for the 004 peak with a FWHM of 0.004°. AFM measurements reveal a surface roughness of 0.2 nm, similar to that of a polished wafer. Analysis of the chemical composition – as determined through XPS surface and depth-profiled measurements – indicates that the film is homogeneous, with a constant III/V ratio of 1 throughout the whole layer, and has no detectable carbon or oxygen contamination. Additionally, the films demonstrate a sharp photoluminescence peak (FWHM of 55 meV), a p-type doping concentration of 1.10<sup>18</sup> cm<sup>−3</sup>, and a hole mobility of 172 cm<sup>2</sup> V⁻<sup>1</sup>.s⁻<sup>1</sup>. This work thus demonstrates a cost-effective growth method for III-V devices, enabled by the reduced gas consumption (only a few sccm, compared to tens of L/min in MOCVD) in RP-CVD operation at low pressure.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109069"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoepitaxial growth of device-grade GaAs using low-pressure remote plasma CVD\",\"authors\":\"Lise Watrin , François Silva , Ludovic Largeau , Nathaniel Findling , Mirella Al Katrib , Muriel Bouttemy , Kassiogé Dembélé , Nicolas Vaissière , Cyril Jadaud , Pavel Bulkin , Jean-Charles Vanel , Erik V. Johnson , Karim Ouaras , Pere Roca i Cabarrocas\",\"doi\":\"10.1016/j.mssp.2024.109069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have achieved the growth of high-quality, homoepitaxial 100 GaAs thin films at 0.5 mbar and 500 °C using a Remote Plasma Chemical Vapor Deposition (RP-CVD) reactor. With this process, we demonstrate a film growth rate up to 3 μm/h, comparable to the conventional MOCVD technique. The resulting films exhibit structural characteristics close to those of commercial GaAs wafers, with excellent crystalline quality as confirmed by SAED patterns and XRD rocking-curve measurements for the 004 peak with a FWHM of 0.004°. AFM measurements reveal a surface roughness of 0.2 nm, similar to that of a polished wafer. Analysis of the chemical composition – as determined through XPS surface and depth-profiled measurements – indicates that the film is homogeneous, with a constant III/V ratio of 1 throughout the whole layer, and has no detectable carbon or oxygen contamination. Additionally, the films demonstrate a sharp photoluminescence peak (FWHM of 55 meV), a p-type doping concentration of 1.10<sup>18</sup> cm<sup>−3</sup>, and a hole mobility of 172 cm<sup>2</sup> V⁻<sup>1</sup>.s⁻<sup>1</sup>. This work thus demonstrates a cost-effective growth method for III-V devices, enabled by the reduced gas consumption (only a few sccm, compared to tens of L/min in MOCVD) in RP-CVD operation at low pressure.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109069\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136980012400965X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012400965X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Homoepitaxial growth of device-grade GaAs using low-pressure remote plasma CVD
We have achieved the growth of high-quality, homoepitaxial 100 GaAs thin films at 0.5 mbar and 500 °C using a Remote Plasma Chemical Vapor Deposition (RP-CVD) reactor. With this process, we demonstrate a film growth rate up to 3 μm/h, comparable to the conventional MOCVD technique. The resulting films exhibit structural characteristics close to those of commercial GaAs wafers, with excellent crystalline quality as confirmed by SAED patterns and XRD rocking-curve measurements for the 004 peak with a FWHM of 0.004°. AFM measurements reveal a surface roughness of 0.2 nm, similar to that of a polished wafer. Analysis of the chemical composition – as determined through XPS surface and depth-profiled measurements – indicates that the film is homogeneous, with a constant III/V ratio of 1 throughout the whole layer, and has no detectable carbon or oxygen contamination. Additionally, the films demonstrate a sharp photoluminescence peak (FWHM of 55 meV), a p-type doping concentration of 1.1018 cm−3, and a hole mobility of 172 cm2 V⁻1.s⁻1. This work thus demonstrates a cost-effective growth method for III-V devices, enabled by the reduced gas consumption (only a few sccm, compared to tens of L/min in MOCVD) in RP-CVD operation at low pressure.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.