{"title":"钻石的 N 型和 P 型掺杂:综述","authors":"Maria Sultana , Subrata Karmakar , Ariful Haque","doi":"10.1016/j.mssp.2024.109024","DOIUrl":null,"url":null,"abstract":"<div><div>Diamond has been one of the most investigated ultrawide bandgap (UWBG) semiconductors for optoelectronics, superconductors, energy, and quantum applications for almost half of a century owing to its unique properties. Diamonds' intrinsic features-a large bandgap (5.47 eV), an extremely high breakdown voltage (10 MV/cm), the highest thermal conductivity (2200 W/m-K), and very high radiation-tolerance, make them promising for high-power, high-frequency devices suitable for high-temperature and extreme radiation environments. Since the demand for high-speed consumer electronics with large power and faster data handling capacity is rising at an unprecedented rate in the post-COVID era, diamonds' excellent mobility of electrons and holes (4500 and 3800 cm<sup>2</sup>/V-s) make them ideal for servers and systems. To materialize these multipurpose devices with higher efficiency and endurance than Si and SiC-based technologies, diamonds with good p- and n-type conductivity are needed. Therefore, nearly several decades-long efforts have been devoted to understanding and controlling the carrier conductivities in diamonds. Furthermore, diamonds' color centers' remarkable application as the qubit for next-generation quantum computers has also sparked interest in investigating diamond point defects at the quantum level. Hence, it is necessary to comprehensively study the fabrication, doping, and applications in semiconducting and quantum devices to stay relevant to the diamond revolution and thus advance this flourishing field. Therefore, this review article summarizes the current status and breakthroughs in diamond doping and devices fabricated using doped diamonds to provide an overview of the challenges and successes in using this highly promising UWBG material in electronic, superconducting, and quantum applications.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109024"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N- and P-type doping of diamonds: A review\",\"authors\":\"Maria Sultana , Subrata Karmakar , Ariful Haque\",\"doi\":\"10.1016/j.mssp.2024.109024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diamond has been one of the most investigated ultrawide bandgap (UWBG) semiconductors for optoelectronics, superconductors, energy, and quantum applications for almost half of a century owing to its unique properties. Diamonds' intrinsic features-a large bandgap (5.47 eV), an extremely high breakdown voltage (10 MV/cm), the highest thermal conductivity (2200 W/m-K), and very high radiation-tolerance, make them promising for high-power, high-frequency devices suitable for high-temperature and extreme radiation environments. Since the demand for high-speed consumer electronics with large power and faster data handling capacity is rising at an unprecedented rate in the post-COVID era, diamonds' excellent mobility of electrons and holes (4500 and 3800 cm<sup>2</sup>/V-s) make them ideal for servers and systems. To materialize these multipurpose devices with higher efficiency and endurance than Si and SiC-based technologies, diamonds with good p- and n-type conductivity are needed. Therefore, nearly several decades-long efforts have been devoted to understanding and controlling the carrier conductivities in diamonds. Furthermore, diamonds' color centers' remarkable application as the qubit for next-generation quantum computers has also sparked interest in investigating diamond point defects at the quantum level. Hence, it is necessary to comprehensively study the fabrication, doping, and applications in semiconducting and quantum devices to stay relevant to the diamond revolution and thus advance this flourishing field. Therefore, this review article summarizes the current status and breakthroughs in diamond doping and devices fabricated using doped diamonds to provide an overview of the challenges and successes in using this highly promising UWBG material in electronic, superconducting, and quantum applications.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109024\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136980012400920X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012400920X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
近半个世纪以来,金刚石因其独特的性能,一直是光电子、超导体、能源和量子应用领域研究最多的超宽带隙(UWBG)半导体之一。金刚石的固有特性--大带隙(5.47 eV)、极高的击穿电压(10 MV/cm)、最高的热导率(2200 W/m-K)和极高的辐射耐受性,使其有望成为适用于高温和极端辐射环境的大功率、高频率器件。由于后 COVID 时代对大功率和更快数据处理能力的高速消费电子产品的需求正以前所未有的速度增长,金刚石优异的电子和空穴迁移率(4500 和 3800 cm2/V-s)使其成为服务器和系统的理想选择。与基于硅和碳化硅的技术相比,要使这些多用途设备具有更高的效率和耐用性,就需要金刚石具有良好的 p 型和 n 型导电性。因此,近几十年来,人们一直致力于了解和控制金刚石的载流子导电性。此外,金刚石的色心作为下一代量子计算机的量子比特的显著应用,也激发了人们在量子水平上研究金刚石点缺陷的兴趣。因此,有必要对半导体和量子设备的制造、掺杂和应用进行全面研究,以便与钻石革命保持联系,从而推动这一蓬勃发展的领域。因此,这篇综述文章总结了金刚石掺杂和使用掺杂金刚石制造器件的现状和突破,概述了在电子、超导和量子应用中使用这种极具潜力的 UWBG 材料所面临的挑战和取得的成功。
Diamond has been one of the most investigated ultrawide bandgap (UWBG) semiconductors for optoelectronics, superconductors, energy, and quantum applications for almost half of a century owing to its unique properties. Diamonds' intrinsic features-a large bandgap (5.47 eV), an extremely high breakdown voltage (10 MV/cm), the highest thermal conductivity (2200 W/m-K), and very high radiation-tolerance, make them promising for high-power, high-frequency devices suitable for high-temperature and extreme radiation environments. Since the demand for high-speed consumer electronics with large power and faster data handling capacity is rising at an unprecedented rate in the post-COVID era, diamonds' excellent mobility of electrons and holes (4500 and 3800 cm2/V-s) make them ideal for servers and systems. To materialize these multipurpose devices with higher efficiency and endurance than Si and SiC-based technologies, diamonds with good p- and n-type conductivity are needed. Therefore, nearly several decades-long efforts have been devoted to understanding and controlling the carrier conductivities in diamonds. Furthermore, diamonds' color centers' remarkable application as the qubit for next-generation quantum computers has also sparked interest in investigating diamond point defects at the quantum level. Hence, it is necessary to comprehensively study the fabrication, doping, and applications in semiconducting and quantum devices to stay relevant to the diamond revolution and thus advance this flourishing field. Therefore, this review article summarizes the current status and breakthroughs in diamond doping and devices fabricated using doped diamonds to provide an overview of the challenges and successes in using this highly promising UWBG material in electronic, superconducting, and quantum applications.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.