{"title":"具有软时间期限的异构车队车辆路由问题的公式和分支切割算法","authors":"Yulin Han, Hande Yaman","doi":"10.1016/j.trb.2024.103104","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a variant of the heterogeneous fleet vehicle routing problem (HVRP) that incorporates soft time deadlines for customers and allows for tardiness at penalty costs. Distinct vehicle types feature varying fixed usage costs and utilize different road networks, resulting in differences in both travel times and travel costs. The objective is to optimize fleet assignment and vehicle service routes to minimize the total fixed vehicle usage costs, routing variable costs, and tardiness costs, while ensuring each customer is visited exactly once and respecting route duration limits. To address this problem, we introduce three compact formulations: the Miller-Tucker-Zemlin formulation (MTZF), single-commodity flow formulation (SCFF), and two-commodity flow formulation (TCFF), comparing their linear programming (LP) relaxations. Additionally, we propose two new families of valid inequalities, in conjunction with generalized subtour elimination constraints, to strengthen these LP relaxations, integrating them into branch-and-cut solution schemes. The theoretical results on the comparison of formulations and the validity of the proposed inequalities hold also for other HVRPs with limited route duration. Computational experiments demonstrate the superior performance of SCFF and TCFF over MTZF, the effectiveness of the proposed valid inequalities in tightening formulations, and the enhanced computational efficiency achieved by incorporating them. Finally, we explore the impact of depot relocation, varying degrees of urgency in customer requests, and varying fixed vehicle usage costs on optimal solutions.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"190 ","pages":"Article 103104"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulations and branch-and-cut algorithms for the heterogeneous fleet vehicle routing problem with soft time deadlines\",\"authors\":\"Yulin Han, Hande Yaman\",\"doi\":\"10.1016/j.trb.2024.103104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a variant of the heterogeneous fleet vehicle routing problem (HVRP) that incorporates soft time deadlines for customers and allows for tardiness at penalty costs. Distinct vehicle types feature varying fixed usage costs and utilize different road networks, resulting in differences in both travel times and travel costs. The objective is to optimize fleet assignment and vehicle service routes to minimize the total fixed vehicle usage costs, routing variable costs, and tardiness costs, while ensuring each customer is visited exactly once and respecting route duration limits. To address this problem, we introduce three compact formulations: the Miller-Tucker-Zemlin formulation (MTZF), single-commodity flow formulation (SCFF), and two-commodity flow formulation (TCFF), comparing their linear programming (LP) relaxations. Additionally, we propose two new families of valid inequalities, in conjunction with generalized subtour elimination constraints, to strengthen these LP relaxations, integrating them into branch-and-cut solution schemes. The theoretical results on the comparison of formulations and the validity of the proposed inequalities hold also for other HVRPs with limited route duration. Computational experiments demonstrate the superior performance of SCFF and TCFF over MTZF, the effectiveness of the proposed valid inequalities in tightening formulations, and the enhanced computational efficiency achieved by incorporating them. Finally, we explore the impact of depot relocation, varying degrees of urgency in customer requests, and varying fixed vehicle usage costs on optimal solutions.</div></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"190 \",\"pages\":\"Article 103104\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261524002285\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524002285","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Formulations and branch-and-cut algorithms for the heterogeneous fleet vehicle routing problem with soft time deadlines
This paper investigates a variant of the heterogeneous fleet vehicle routing problem (HVRP) that incorporates soft time deadlines for customers and allows for tardiness at penalty costs. Distinct vehicle types feature varying fixed usage costs and utilize different road networks, resulting in differences in both travel times and travel costs. The objective is to optimize fleet assignment and vehicle service routes to minimize the total fixed vehicle usage costs, routing variable costs, and tardiness costs, while ensuring each customer is visited exactly once and respecting route duration limits. To address this problem, we introduce three compact formulations: the Miller-Tucker-Zemlin formulation (MTZF), single-commodity flow formulation (SCFF), and two-commodity flow formulation (TCFF), comparing their linear programming (LP) relaxations. Additionally, we propose two new families of valid inequalities, in conjunction with generalized subtour elimination constraints, to strengthen these LP relaxations, integrating them into branch-and-cut solution schemes. The theoretical results on the comparison of formulations and the validity of the proposed inequalities hold also for other HVRPs with limited route duration. Computational experiments demonstrate the superior performance of SCFF and TCFF over MTZF, the effectiveness of the proposed valid inequalities in tightening formulations, and the enhanced computational efficiency achieved by incorporating them. Finally, we explore the impact of depot relocation, varying degrees of urgency in customer requests, and varying fixed vehicle usage costs on optimal solutions.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.