生物现实主义突触复制 "V "型氧空位记忆晶体管

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-05 DOI:10.1002/adfm.202416325
Lanqing Zou, Zhuiri Peng, Huajun Sun, Yunhui Yi, Chuqian Zhu, Jiyang Xu, Junming Zhang, Xuebin Hu, Yiping Dang, Lei Ye, Xiangshui Miao
{"title":"生物现实主义突触复制 \"V \"型氧空位记忆晶体管","authors":"Lanqing Zou, Zhuiri Peng, Huajun Sun, Yunhui Yi, Chuqian Zhu, Jiyang Xu, Junming Zhang, Xuebin Hu, Yiping Dang, Lei Ye, Xiangshui Miao","doi":"10.1002/adfm.202416325","DOIUrl":null,"url":null,"abstract":"The development of an artificial synaptic device is essential for the construction of a brain-like neuromorphic computing architecture. In this study, the goal is to create a multi-layer HfO<sub>x</sub> memristor with a “V” type oxygen vacancy (V<sub>o</sub>) distribution to mimic the function of calcium ions (Ca<sup>2+</sup>) during synaptic information transmission. By adjusting voltage and compliance current (<i>I<sub>cc</sub></i>), the HfO<sub>x</sub> memristor can open or close different levels of volt-controlled Ca<sup>2+</sup> channels, thus enabling the replication of synaptic structure, neurotransmitter release/acceptor, and information transmission. A mathematical model is adopted to describe the behavior of volt-controlled Ca<sup>2+</sup> channels, which demonstrates that the device exhibits consistent characteristics with biological synapses. The device forms an “hourglass” conductive filament (CF) within its middle functional layer, allowing for precise control over filament formation and positioning. This results in ultra-low power consumption for erasing (581 fJ), fast erasing speed (10 ns), and a low resistance difference coefficient of only 1.8%. Furthermore, the device successfully simulates the physical dynamics of Ca<sup>2+</sup> during short-term potentiation (STP) and long-term potentiation (LTP) in biological synapses while replicating various guided synaptic behaviors. This study provides a straightforward method for memristors to realize bio-realistic artificial neuromorphic applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-Realistic Synaptic-Replicated “V” Type Oxygen Vacancy Memristor\",\"authors\":\"Lanqing Zou, Zhuiri Peng, Huajun Sun, Yunhui Yi, Chuqian Zhu, Jiyang Xu, Junming Zhang, Xuebin Hu, Yiping Dang, Lei Ye, Xiangshui Miao\",\"doi\":\"10.1002/adfm.202416325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of an artificial synaptic device is essential for the construction of a brain-like neuromorphic computing architecture. In this study, the goal is to create a multi-layer HfO<sub>x</sub> memristor with a “V” type oxygen vacancy (V<sub>o</sub>) distribution to mimic the function of calcium ions (Ca<sup>2+</sup>) during synaptic information transmission. By adjusting voltage and compliance current (<i>I<sub>cc</sub></i>), the HfO<sub>x</sub> memristor can open or close different levels of volt-controlled Ca<sup>2+</sup> channels, thus enabling the replication of synaptic structure, neurotransmitter release/acceptor, and information transmission. A mathematical model is adopted to describe the behavior of volt-controlled Ca<sup>2+</sup> channels, which demonstrates that the device exhibits consistent characteristics with biological synapses. The device forms an “hourglass” conductive filament (CF) within its middle functional layer, allowing for precise control over filament formation and positioning. This results in ultra-low power consumption for erasing (581 fJ), fast erasing speed (10 ns), and a low resistance difference coefficient of only 1.8%. Furthermore, the device successfully simulates the physical dynamics of Ca<sup>2+</sup> during short-term potentiation (STP) and long-term potentiation (LTP) in biological synapses while replicating various guided synaptic behaviors. This study provides a straightforward method for memristors to realize bio-realistic artificial neuromorphic applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416325\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416325","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发人工突触设备对于构建类脑神经形态计算架构至关重要。在这项研究中,我们的目标是创建一种具有 "V "型氧空位(Vo)分布的多层氧化铪忆阻器,以模拟钙离子(Ca2+)在突触信息传输过程中的功能。通过调节电压和顺应电流(Icc),氧化铪忆阻器可以打开或关闭不同水平的伏控 Ca2+ 通道,从而实现突触结构、神经递质释放/接受和信息传输的复制。我们采用数学模型来描述伏控 Ca2+ 通道的行为,结果表明该装置与生物突触具有一致的特征。该器件在其中间功能层中形成了一个 "沙漏 "导电丝(CF),从而实现了对导电丝形成和定位的精确控制。这使得擦除功耗超低(581 fJ),擦除速度快(10 ns),电阻差异系数低(仅为 1.8%)。此外,该装置还成功模拟了生物突触中短期电位(STP)和长期电位(LTP)期间 Ca2+ 的物理动态,同时复制了各种引导性突触行为。这项研究为记忆晶闸管实现生物现实人工神经形态应用提供了一种直接的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-Realistic Synaptic-Replicated “V” Type Oxygen Vacancy Memristor
The development of an artificial synaptic device is essential for the construction of a brain-like neuromorphic computing architecture. In this study, the goal is to create a multi-layer HfOx memristor with a “V” type oxygen vacancy (Vo) distribution to mimic the function of calcium ions (Ca2+) during synaptic information transmission. By adjusting voltage and compliance current (Icc), the HfOx memristor can open or close different levels of volt-controlled Ca2+ channels, thus enabling the replication of synaptic structure, neurotransmitter release/acceptor, and information transmission. A mathematical model is adopted to describe the behavior of volt-controlled Ca2+ channels, which demonstrates that the device exhibits consistent characteristics with biological synapses. The device forms an “hourglass” conductive filament (CF) within its middle functional layer, allowing for precise control over filament formation and positioning. This results in ultra-low power consumption for erasing (581 fJ), fast erasing speed (10 ns), and a low resistance difference coefficient of only 1.8%. Furthermore, the device successfully simulates the physical dynamics of Ca2+ during short-term potentiation (STP) and long-term potentiation (LTP) in biological synapses while replicating various guided synaptic behaviors. This study provides a straightforward method for memristors to realize bio-realistic artificial neuromorphic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Ambient Sunlight Driven Photothermal Green Syngas Production at 100 m3 Scale by the Dynamic Structural Reconstruction of Iron Oxides with 38.7% Efficiency Strong Ion-Dipole Interactions for Stable Zinc-Ion Batteries with Wide Temperature Range Bagworm Silk-Mimetic Protein Fibers with Extraordinary Stiffness via In Vivo Polymerization and Hierarchical Self-Assembly Metalloid Phosphorus Induces Tunable Defect Engineering in High Entropy Oxide Toward Advanced Lithium-Ion Batteries Bio-Realistic Synaptic-Replicated “V” Type Oxygen Vacancy Memristor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1