自组装肽水凝胶支架可加速髌腱损伤的愈合:组织学和生物力学研究

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-11-05 DOI:10.1177/08853282241299212
Takashi Ishitani, Shuhei Otsuki, Shota Yamauchi, Yoshinori Okamoto, Hitoshi Wakama, Shunsuke Sezaki, Junya Matsuyama, Kaito Nakamura, Takeru Iwata, Chuji Hirota, Yoshiaki Hirano
{"title":"自组装肽水凝胶支架可加速髌腱损伤的愈合:组织学和生物力学研究","authors":"Takashi Ishitani, Shuhei Otsuki, Shota Yamauchi, Yoshinori Okamoto, Hitoshi Wakama, Shunsuke Sezaki, Junya Matsuyama, Kaito Nakamura, Takeru Iwata, Chuji Hirota, Yoshiaki Hirano","doi":"10.1177/08853282241299212","DOIUrl":null,"url":null,"abstract":"<p><p>Although KI24RGDS peptide hydrogel that acts as a cell adhesion has been reported to repair tissue in meniscus injury, its effect on tendon injuries remains unknown. The purpose of this study was to clarify the effect of KI24RGDS for tendon repair based on histological and biomechanical evaluation. After introducing defects (length: 10 mm; width: 3 mm) at the centers of rabbits' patellar tendons, and the KI24RGDS group was implanted with KI24RGDS and observed for 8 weeks. KI24RGDS implantation resulted in limited tendon elongation and better histological scores with uniformed collagen fiber orientation and early vascularization. The failure load of the patellar tendon was higher in the KI24RGDS group than that in the defect group (<i>p</i> < 0.05) and no significant difference with the control group (intact patellar tendon) at 8 weeks postoperatively. In conclusion, KI24RGDS administration might have therapeutic potential for tendon injuries by accelerating collagen remodeling.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241299212"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembling peptide hydrogel scaffold accelerates healing of patellar tendon injury: A histological and biomechanical study.\",\"authors\":\"Takashi Ishitani, Shuhei Otsuki, Shota Yamauchi, Yoshinori Okamoto, Hitoshi Wakama, Shunsuke Sezaki, Junya Matsuyama, Kaito Nakamura, Takeru Iwata, Chuji Hirota, Yoshiaki Hirano\",\"doi\":\"10.1177/08853282241299212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although KI24RGDS peptide hydrogel that acts as a cell adhesion has been reported to repair tissue in meniscus injury, its effect on tendon injuries remains unknown. The purpose of this study was to clarify the effect of KI24RGDS for tendon repair based on histological and biomechanical evaluation. After introducing defects (length: 10 mm; width: 3 mm) at the centers of rabbits' patellar tendons, and the KI24RGDS group was implanted with KI24RGDS and observed for 8 weeks. KI24RGDS implantation resulted in limited tendon elongation and better histological scores with uniformed collagen fiber orientation and early vascularization. The failure load of the patellar tendon was higher in the KI24RGDS group than that in the defect group (<i>p</i> < 0.05) and no significant difference with the control group (intact patellar tendon) at 8 weeks postoperatively. In conclusion, KI24RGDS administration might have therapeutic potential for tendon injuries by accelerating collagen remodeling.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282241299212\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241299212\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241299212","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然有报道称 KI24RGDS 多肽水凝胶具有细胞粘附作用,可修复半月板损伤组织,但其对肌腱损伤的效果仍然未知。本研究的目的是根据组织学和生物力学评估,阐明 KI24RGDS 对肌腱修复的效果。在兔子髌腱中心引入缺损(长:10 毫米;宽:3 毫米)后,KI24RGDS 组植入 KI24RGDS 并观察 8 周。植入 KI24RGDS 后,肌腱伸长有限,组织学评分较好,胶原纤维取向一致,血管早期形成。术后 8 周时,KI24RGDS 组的髌腱失效负荷高于缺损组(P < 0.05),与对照组(完整髌腱)无显著差异。总之,KI24RGDS 可通过加速胶原重塑对肌腱损伤具有治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-assembling peptide hydrogel scaffold accelerates healing of patellar tendon injury: A histological and biomechanical study.

Although KI24RGDS peptide hydrogel that acts as a cell adhesion has been reported to repair tissue in meniscus injury, its effect on tendon injuries remains unknown. The purpose of this study was to clarify the effect of KI24RGDS for tendon repair based on histological and biomechanical evaluation. After introducing defects (length: 10 mm; width: 3 mm) at the centers of rabbits' patellar tendons, and the KI24RGDS group was implanted with KI24RGDS and observed for 8 weeks. KI24RGDS implantation resulted in limited tendon elongation and better histological scores with uniformed collagen fiber orientation and early vascularization. The failure load of the patellar tendon was higher in the KI24RGDS group than that in the defect group (p < 0.05) and no significant difference with the control group (intact patellar tendon) at 8 weeks postoperatively. In conclusion, KI24RGDS administration might have therapeutic potential for tendon injuries by accelerating collagen remodeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Monoclonal antibodies against jellyfish collagen. Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation. 3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate. Antibacterial nonwoven materials in medicine and healthcare. A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1