抵消氧化锰中詹-泰勒效应以提高锌离子电池性能的创新策略

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-05 DOI:10.1016/j.jpowsour.2024.235690
{"title":"抵消氧化锰中詹-泰勒效应以提高锌离子电池性能的创新策略","authors":"","doi":"10.1016/j.jpowsour.2024.235690","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its high energy density, non-toxic, economical and efficient, manganese oxide stands out as a promising cathode material for employment in aqueous zinc-ion batteries. However, the Jahn-Teller effect of Mn<sup>3+</sup> and manganese dissolution impose limitations on the widespread application of aqueous zinc-ion batteries during charging and discharging. Herein, the Co doped Mn<sub>2</sub>O<sub>3</sub> electrode material is introduced. Co atoms in the low valence state replace Mn in the manganese oxide lattice, which effectively regulates the layer spacing of Mn<sub>2</sub>O<sub>3</sub>. This modulation maintains the structural stability of the electrode during cycling, prevents structural collapse, and inhibits manganese dissolution and the Jahn-Teller effect. Additionally, Co doping increased oxygen vacancies and improved the conductivity of zinc-ion batteries. The Co-Mn<sub>2</sub>O<sub>3</sub> electrode exhibits a high specific capacity of 478 mAh·g<sup>−1</sup> at 0.1 A g<sup>−1</sup> current density, with 93 % capacity retention 1000 cycles at 1 A g<sup>−1</sup> current density. This study delves into the role of Co doping in suppressing the Jahn-Teller effect, offering new insights for improving manganese oxide as an anode material for zinc-ion batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative strategies to Counteract Jahn-Teller effect in manganese oxide for enhanced zinc-ion battery performance\",\"authors\":\"\",\"doi\":\"10.1016/j.jpowsour.2024.235690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to its high energy density, non-toxic, economical and efficient, manganese oxide stands out as a promising cathode material for employment in aqueous zinc-ion batteries. However, the Jahn-Teller effect of Mn<sup>3+</sup> and manganese dissolution impose limitations on the widespread application of aqueous zinc-ion batteries during charging and discharging. Herein, the Co doped Mn<sub>2</sub>O<sub>3</sub> electrode material is introduced. Co atoms in the low valence state replace Mn in the manganese oxide lattice, which effectively regulates the layer spacing of Mn<sub>2</sub>O<sub>3</sub>. This modulation maintains the structural stability of the electrode during cycling, prevents structural collapse, and inhibits manganese dissolution and the Jahn-Teller effect. Additionally, Co doping increased oxygen vacancies and improved the conductivity of zinc-ion batteries. The Co-Mn<sub>2</sub>O<sub>3</sub> electrode exhibits a high specific capacity of 478 mAh·g<sup>−1</sup> at 0.1 A g<sup>−1</sup> current density, with 93 % capacity retention 1000 cycles at 1 A g<sup>−1</sup> current density. This study delves into the role of Co doping in suppressing the Jahn-Teller effect, offering new insights for improving manganese oxide as an anode material for zinc-ion batteries.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324016422\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324016422","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化锰具有能量密度高、无毒、经济、高效等特点,是一种很有前途的用于锌离子水电池的阴极材料。然而,Mn3+的贾恩-泰勒效应和锰的溶解限制了锌离子水电池在充放电过程中的广泛应用。本文介绍了掺 Co 的 Mn2O3 电极材料。低价态的 Co 原子取代了氧化锰晶格中的 Mn,从而有效地调节了 Mn2O3 的层间距。这种调节可保持电极在循环过程中的结构稳定性,防止结构坍塌,并抑制锰溶解和贾恩-泰勒效应。此外,掺入 Co 增加了氧空位,提高了锌离子电池的导电性。Co-Mn2O3 电极在 0.1 A g-1 电流密度下显示出 478 mAh-g-1 的高比容量,在 1 A g-1 电流密度下 1000 次循环的容量保持率为 93%。这项研究深入探讨了掺杂 Co 在抑制 Jahn-Teller 效应方面的作用,为改进作为锌离子电池阳极材料的氧化锰提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative strategies to Counteract Jahn-Teller effect in manganese oxide for enhanced zinc-ion battery performance
Due to its high energy density, non-toxic, economical and efficient, manganese oxide stands out as a promising cathode material for employment in aqueous zinc-ion batteries. However, the Jahn-Teller effect of Mn3+ and manganese dissolution impose limitations on the widespread application of aqueous zinc-ion batteries during charging and discharging. Herein, the Co doped Mn2O3 electrode material is introduced. Co atoms in the low valence state replace Mn in the manganese oxide lattice, which effectively regulates the layer spacing of Mn2O3. This modulation maintains the structural stability of the electrode during cycling, prevents structural collapse, and inhibits manganese dissolution and the Jahn-Teller effect. Additionally, Co doping increased oxygen vacancies and improved the conductivity of zinc-ion batteries. The Co-Mn2O3 electrode exhibits a high specific capacity of 478 mAh·g−1 at 0.1 A g−1 current density, with 93 % capacity retention 1000 cycles at 1 A g−1 current density. This study delves into the role of Co doping in suppressing the Jahn-Teller effect, offering new insights for improving manganese oxide as an anode material for zinc-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Self-healing Polymer-clay Nanocomposite Hydrogel-based All-in-one Stretchable Supercapacitor Ionic liquids based polymer electrolytes for supercapacitor applications Innovative strategies to Counteract Jahn-Teller effect in manganese oxide for enhanced zinc-ion battery performance Transition from liquid-electrode batteries to colloidal electrode batteries for long-lasting performance Thermal characteristics of LiMnxFe1-xPO4 (x = 0, 0.6) cathode materials for safe lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1